Baroclinic Effect on Inner-Port Circulation in a Macro-Tidal Estuary: A Case Study of Incheon North Port, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Surveys and Data Collection
2.3. Physical Environment
2.4. Numerical Model
2.4.1. Model Grids
2.4.2. Boundary Conditions and Initial Fields
2.4.3. FVCOM-SWAVE
3. Results
3.1. Validation
3.2. Stratification by Salinity
3.3. Cross-Sectional Net Velocity of the Port
4. Discussion
4.1. Spatial Distributions of Salinity
4.2. Along-Port Cross-Sectional Salinity and Current Profile
4.3. Inner-Port Stability by the Richardson Number
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Measuring Instruments
Winter | Summer | |||
---|---|---|---|---|
ADCP | CTD (Surface, Bottom) | ADCP | CTD (Surface, Bottom) | |
HSD | WorkHorse Sentinel 1200 khz, RDI | RBR virtuoso, IDRONAUT | Signature | XR-420, IDRONAUT |
NP | WorkHorse Sentinel 600 khz, RDI | RBR concerto, IDRONAUT | WorkHorse Sentinel 1200 khz, RDI | RBR concerto, IDRONAUT |
Appendix B. Unstructured Grid for FVCOM
References
- Cheng, Z.; Jalon-Rójas, I.; Wang, X.; Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 2020, 242, 106861. [Google Scholar] [CrossRef]
- van Maren, D.S.; van Kessel, T.; Cronin, K.; Sittoni, L. The impact of channel deepening and dredging on estuarine sediment concentration. Cont. Shelf Res. 2015, 95, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Wang, H.V.; Kim, S.-C.; Oh, J.-H. A Model Study of the Estuarine Turbidity Maximum along the Main Channel of the Upper Chesapeake Bay. Estuaries Coasts 2008, 31, 115–133. [Google Scholar] [CrossRef]
- Ganju, N.; Schoellhamer, D. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution. Cont. Shelf Res. 2009, 29, 148–158. [Google Scholar] [CrossRef]
- Uncles, R.J.; Stephens, J.A. Distributions of suspended sediment at high water in a macrotidal estuary. J. Geophys. Res. Ocean. 1989, 94, 14395–14405. [Google Scholar] [CrossRef]
- Stoschek, O.; Zimmermann, C. Water Exchange and Sedimentation in an Estuarine Tidal Harbor Using Three-Dimensional Simulation. J. Waterw. Port Coast. Ocean. Eng. 2006, 132, 410–414. [Google Scholar] [CrossRef]
- PIANC. Minimising Harbor Siltation, Report No. 102-2008; PIANC: Brussels, Belgium, 2008. [Google Scholar]
- Juez, C.; Thalmann, M.; Schleiss, A.J.; Franca, M.J. Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities. Adv. Water Resour. 2018, 115, 44–59. [Google Scholar] [CrossRef]
- Lee, G.H.; Shin, H.J.; Kim, Y.T.; Dellapenna, T.M.; Kim, K.J.; Williams, J.; Kim, S.Y.; Figueroa, S.M. Field investigation of siltation at a tidal harbor: North Port of Incheon, Korea. Ocean Dyn. 2019, 69, 1101–1120. [Google Scholar] [CrossRef]
- Park, K.; Oh, J.-H.; Kim, H.-S.; Im, H.-H. Case Study: Mass Transport Mechanism in Kyunggi Bay around Han River Mouth, Korea. J. Hydraul. Eng. 2002, 128, 257–267. [Google Scholar] [CrossRef]
- Gu, B.-H.; Woo, S.-B.; Kim, S. Improved Estuaries Salinity Stratification at Gyeonggi Bay Using Data Assimilation with Finite Volume Coastal Ocean Model (FVCOM). J. Coast. Res. 2019, 91, 416–420. [Google Scholar] [CrossRef]
- Yoon, B.I.; Woo, S.B. The Along-channel Salinity Distribution and its Response to River Discharge in Tidally-dominated Han River Estuary, South Korea. Procedia Eng. 2015, 116, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Chanis, G.E.; Reyes-Merlo, M.Á.; Díez-Minguito, M.; Valle-Levinson, A. Saltwater intrusion in a subtropical estuary. Estuar. Coast. Shelf Sci. 2019, 217, 28–36. [Google Scholar] [CrossRef]
- Monismith, S.G.; Kimmerer, W.; Burau, J.R.; Stacey, M.T. Structure and Flow-Induced Variability of the Subtidal Salinity Field in Northern San Francisco Bay. J. Phys. Oceanogr. 2002, 32, 3003–3019. [Google Scholar] [CrossRef] [Green Version]
- Bowen, M.M.; Geyer, W.R. Salt transport and the time-dependent salt balance of a partially stratified estuary. J. Geophys. Res. Ocean. 2003, 108, 3158. [Google Scholar] [CrossRef]
- Oey, L.-Y. On Steady Salinity Distribution and Circulation in Partially Mixed and Well Mixed Estuaries. J. Phys. Oceanogr. 1984, 14, 629–645. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Shen, J. The Response of Salt Intrusion to Changes in River Discharge and Tidal Mixing During the Dry Season in the Modaomen Estuary, China. Cont. Shelf Res. 2011, 31, 769–788. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J. Salt intrusion and its controls in the macro-tidal Oujiang River Estuary, China. Ocean Dyn. 2020, 70, 1409–1420. [Google Scholar] [CrossRef]
- Yoon II, B.; Woo, S.-B. Correlation between freshwater discharge and salinity intrusion in the Han River Estuary, South Korea. J. Coast. Res. 2013, 65, 1247–1252. [Google Scholar] [CrossRef]
- Ralston, D.K.; Geyer, W.R.; Lerczak, J.A. Structure, variability, and salt flux in a strongly forced salt wedge estuary. J. Geophys. Res. Ocean. 2010, 115, C06005. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, H.; Beardsley, R.C. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.; Cowles, G. An Unstructured Grid, Finite-Volume Coastal Ocean Model: FVCOM User Manual, 2nd ed.; Sea Grant College Program, Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Beardsley, R.; Franks, P.J.S. A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part I: Physical model. Deep. Res. Part II Top. Stud. Oceanogr. 2001, 48, 419–456. [Google Scholar] [CrossRef]
- Cowles, G.W.; Lentz, S.J.; Chen, C.; Xu, Q.; Beardsley, R.C. Comparison of observed and model-computed low frequency circulation and hydrography on the New England Shelf.pdf. J. Geophys. Res. 2008, 113, C09015. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Madsen, O.S.; Poon, Y.K.; Graber, H.C. Spectral wave attenuation by bottom friction: Theory. In Proceedings of the 21st Conference on Coastal Engineering, Torremolinos, Spain, 29 January 1988; Edge, B.L., Ed.; ASCE: Reston, VA, USA; pp. 492–504. [Google Scholar]
- Qi, J.; Chen, C.; Beardsley, R.C.; Perrie, W.; Cowles, G.W.; Lai, Z. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Model. 2009, 28, 153–166. [Google Scholar] [CrossRef]
- Winterwerp, J. Reducing Harbor Siltation. I: Methodology. J. Waterw. Port Coast. Ocean. Eng. 2005, 131, 258–266. [Google Scholar] [CrossRef]
M2 | S2 | K1 | O1 | N2 | L2 | Q1 | MU2 | |
---|---|---|---|---|---|---|---|---|
Amplitude (cm) | 282.3 | 113.5 | 38.9 | 28.9 | 52.5 | 15.0 | 4.7 | 9.4 |
Phase (°) | 129.5 | 186.1 | 303.2 | 263.4 | 108.4 | 148.8 | 238.7 | 178.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-S.; Woo, S.-B.; Lee, H.S.; Gu, B.-H.; Kim, J.W.; Song, J.I. Baroclinic Effect on Inner-Port Circulation in a Macro-Tidal Estuary: A Case Study of Incheon North Port, Korea. J. Mar. Sci. Eng. 2022, 10, 392. https://doi.org/10.3390/jmse10030392
Jeong J-S, Woo S-B, Lee HS, Gu B-H, Kim JW, Song JI. Baroclinic Effect on Inner-Port Circulation in a Macro-Tidal Estuary: A Case Study of Incheon North Port, Korea. Journal of Marine Science and Engineering. 2022; 10(3):392. https://doi.org/10.3390/jmse10030392
Chicago/Turabian StyleJeong, Jae-Soon, Seung-Buhm Woo, Han Soo Lee, Bon-Ho Gu, Jong Wook Kim, and Jin Il Song. 2022. "Baroclinic Effect on Inner-Port Circulation in a Macro-Tidal Estuary: A Case Study of Incheon North Port, Korea" Journal of Marine Science and Engineering 10, no. 3: 392. https://doi.org/10.3390/jmse10030392
APA StyleJeong, J. -S., Woo, S. -B., Lee, H. S., Gu, B. -H., Kim, J. W., & Song, J. I. (2022). Baroclinic Effect on Inner-Port Circulation in a Macro-Tidal Estuary: A Case Study of Incheon North Port, Korea. Journal of Marine Science and Engineering, 10(3), 392. https://doi.org/10.3390/jmse10030392