Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia
Abstract
:1. Introduction
2. Methods in Determining Coastal Vulnerability
- i.
- Indexes
- ii.
- Indicators
- iii.
- Geographical Information System (GIS)
- iv.
- Dynamic computer models
2.1. Indexes
2.2. Indicators
2.3. Geographical Information System (GIS)
2.4. Dynamic Computer Models
3. Factors Affecting Vulnerability
4. Vulnerabilities Associated with Southeast Asian Coast
Location | Parameters | CVI Calculation | Reference |
---|---|---|---|
Thanh Hóa, Vietnam | Flood, Typhoon, Storm | (X1 + X2 + X3 + … Xn)/n | Hens et al. [37] |
Central Vietnam | Flood, storm, landslide | (X1 + X2 + X3 + … Xn)/n | Hoang et al. [22] |
Phetchaburi, Thailand | Erosion | (X1 + X2 + X3 + … Xn)/n | Ritphring et al. [39] |
Prachuap Khiri Khan, Thailand | Sea Level Rise | sqrt ((X1 × X2 × X3 × … Xn)/n) | Nidhinarangkoon et al. [50] |
Riau, Indonesia | Erosion | sqrt ((X1 × X2 × X3 × … Xn)/n) | Sandhyavitri et al. [40] |
Aceh Besar, Indonesia | Erosion | sqrt ((X1 × X2 × X3 × … Xn)/n) | Irham et al. [41] |
Davao del Norte, Philippines | Cyclone, Rainfall, Erosion, Flood | (X1 + X2 + X3 + … Xn)/n | Jocsonand Magallon [42] |
Marinduque Island, Philippines | Flood | (X1 + X2 + X3 + … Xn)/n | Prasetyo et al. [43] |
Pahang’s Coast, Malaysia | Sea Level Rise | (X1 × X2 × X3 × … Xn)/n | Mohd et al. [44] |
Cherating, Malaysia | Sea Level Rise | sqrt ((X1 × X2 × X3 × … Xn)/n) | Mohd et al. [44] |
Kelantan and Terengganu’s Coast, Malaysia | Sea Level Rise | CVI = sqrt ((X1 × X2 × X3 × … Xn)/n) | Ariffin et al. [45] |
Tutong River basin, Brunei | Flood | sqrt ((X1 × X2 × X3 × … Xn)/n) | Jha et al. [46] |
Coastal of Cambodia | Landslide | sqrt ((X1 × X2 × X3 × … Xn)/n) | Horlings and Marschke [47] |
Ayeyarwady Delta coast, Myanmar | Cyclone | sqrt ((X1 × X2 × X3 × … Xn)/n) | Hirano [48] |
Southern Myanmar coast | Storm | sqrt ((X1 × X2 × X3 × … Xn)/n) | Mandle et al. [49] |
5. Gap in Coastal Vulnerability Assessment
6. Way Forward in Adaptation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Rubinato, M.; Heyworth, J.; Hart, J. Protecting Coastlines from Flooding in a Changing Climate: A Preliminary Experimental Study to Investigate a Sustainable Approach. Water 2020, 12, 2471. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Guillard-Gonçalves, C.; Zêzere, J.L. Combining Social Vulnerability and Physical Vulnerability to Analyse Landslide Risk at the Municipal Scale. Geosciences 2018, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Masselink, G.; Lazarus, E.D. Defining Coastal Resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Passy, P.; Oh, R.R. Impacts of population density and wealth on the quantity and structure of urban green space in tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- Nitivattananon, V.; Srinonil, S. Enhancing coastal areas governance for sustainable tourism in the context of urbanization and climate change in eastern Thailand. Adv. Clim. Change Res. 2019, 10, 47–58. [Google Scholar] [CrossRef]
- Rocha, I.C.N.; Ramos, K.G.; Crispino, K.T. Food and Waterborne Disease Outbreaks after a Super Typhoon Hit the South-ern Philippines during the COVID-19 Pandemic: A Triple Public Health Emergency. Prehospital Disaster Med. 2022, 37, 1–2. [Google Scholar] [CrossRef]
- Luu, C.; Bui, Q.D.; von Meding, J. Mapping direct flood impacts from a 2020 extreme flood event in Central Vietnam using spatial analysis techniques. Int. J. Disaster Resil. Built Environ. 2021, 7, 110–115. [Google Scholar] [CrossRef]
- Khadami, F.; Purnaningtyas, D.W. Ocean Response to Tropical Cyclone Seroja at East Nusa Tenggara Waters. IOP Conf. Ser. Earth Environ. Sci. 2021, 925, 012045. [Google Scholar] [CrossRef]
- Jipanin, S.J.; Shaleh, S.R.M.; Lim, P.T.; Leaw, C.P.; Mustapha, S. The Monitoring of Harmful Algae Blooms in Sabah, Malaysia. J. Phys. Conf. Ser. 2019, 1358, 012014. [Google Scholar] [CrossRef] [Green Version]
- Keawsang-In, K.; Ratjiranukool, S.; Ratjiranukool, P. Sensitivity of different physics schemes using WRF model in Typhoon Damrey (2017) over the Indochina region. J. Phys. Conf. Ser. 2021, 2145, 012046. [Google Scholar] [CrossRef]
- Elmhirst, R.; Middleton, C.; Resurrección, B.P. Migration and floods in Southeast Asia: A mobile political ecology of vulnerability, resilience and social justice. In Living with Floods in a Mobile Southeast Asia; Routledge: London, UK, 2017; pp. 1–21. [Google Scholar]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Mohd, F.A.; Maulud, K.N.A.; Karim, O.A.; Begum, R.A.; Khan, F.; Jaafar, W.S.W.M.; Abdullah, S.M.S.; Toriman, M.E.; Kamarudin, M.K.A.; Gasim, M.B.; et al. An Assessment of Coastal Vulnerability of Pahang’s Coast Due to Sea Level Rise. Int. J. Eng. Technol. 2018, 7, 176–180. [Google Scholar] [CrossRef]
- Hoque, M.A.-A.; Phinn, S.; Roelfsema, C.; Childs, I. Assessing tropical cyclone risks using geospatial techniques. Appl. Geogr. 2018, 98, 22–33. [Google Scholar] [CrossRef]
- Ahmad, H.; Maulud, K.N.A.; Karim, O.A.; Mohd, F.A. Assessment of erosion and hazard in the coastal areas of Selangor. Geogr. Malays. J. Soc. Space 2021, 17, 14–30. [Google Scholar] [CrossRef]
- Ghosh, S.; Mistri, B. Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria decision-making approaches. Ocean Coast. Manag. 2021, 209, 105641. [Google Scholar] [CrossRef]
- Gornitz, V. Vulnerability of the East Coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237. [Google Scholar]
- Hoang, H.D.; Momtaz, S.; Schreider, M. Assessing the vulnerability of small-scale fishery communities in the estuarine areas of Central Vietnam in the context of increasing climate risks. Ocean Coast. Manag. 2020, 196, 105302. [Google Scholar] [CrossRef]
- Ghazali, N.H.M.; Awang, N.A.; Mahmud, M.; Mokhtar, A. Impact of Sea Level Rise and Tsunami on Coastal Areas of North-West Peninsular Malaysia. Irrig. Drain. 2018, 67, 119–129. [Google Scholar] [CrossRef]
- Huu, T.N.; Thanh, T.H. Adaptation to salinity intrusion for rice farming household in the Vietnamese Mekong Delta. In ASEAN/Asian Academic Society International Conference Proceeding Series; Indonesian Student Association in Thailand, Chulalongkorn University: Bangkok, Thailand, 2018; pp. 673–680. [Google Scholar]
- Selamat, S.N.; Maulud, K.N.A.; Mohd, F.A.; Rahman, A.A.A.; Zainal, M.K.; Wahid, M.A.A.; Awang, N.A. Multi method analysis for identifying the shoreline erosion during northeast monsoon season. J. Sustain. Sci. Manag. 2019, 14, 43–54. [Google Scholar]
- Akester, M.J. Productivity and coastal fisheries biomass yields of the northeast coastal waters of the Bay of Bengal Large Ma-rine Ecosystem. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2019, 163, 46–56. [Google Scholar] [CrossRef]
- Kamarudin, M.K.A.; Nalado, A.M.; Toriman, M.E.; Juahir, H.; Umar, R.; Ismail, A.; Wahab, N.A.; Saad, M.H.M.; Maulud, K.N.; Hanafiah, M.M.; et al. Evolution of river geomorphology to water quality impact using remote sensing and GIS technique. Desalination Water Treat. 2019, 149, 258–273. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S. Remote Sensing and GIS in Environmental Management. In Environmental Management: Issues and Concerns in Developing Countries; Springer: Heidelberg, Germany, 2021; pp. 185–220. [Google Scholar]
- Ghoussein, Y.; Mhawej, M.; Jaffal, A.; Fadel, A.; El Hourany, R.; Faour, G. Vulnerability assessment of the South-Lebanese coast: A GIS-based approach. Ocean Coast. Manag. 2018, 158, 56–63. [Google Scholar] [CrossRef]
- Win, S.; Towprayoon, S.; Chidthisong, A. Mangrove status, its ecosystem, and climate change in Myanmar: A study in Ayeyarwaddy Delta Coastal Zone. IOP Conf. Ser. Earth Environ. Sci. 2020, 496, 012007. [Google Scholar] [CrossRef]
- Menendez, P.; Losada, I.J.; Beck, M.W.; Torres-Ortega, S.; Espejo, A.; Narayan, S.; Lange, G.M. Valuing the protection ser-vices of mangroves at national scale: The Philippines. Ecosyst. Serv. 2018, 34, 24–36. [Google Scholar] [CrossRef]
- Tran, D.D.; Cao, H.V.; Dinh, Q.M.; Tran, L.X. An assessment of fisheries resources in the coastal water of the Mekong Delta, Vietnam. Aquac. Aquar. Conserv. Legis. 2020, 13, 3683–3693. [Google Scholar]
- Thanvisitthpon, N.; Shrestha, S.; Pal, I. Urban flooding and climate change: A case study of Bangkok, Thailand. Environ. Urban. ASIA 2018, 9, 86–100. [Google Scholar] [CrossRef]
- Bagheri, M.; Ibrahim, Z.Z.; Akhir, M.F.; Oryani, B.; Rezania, S.; Wolf, I.D.; Talaat, W.I.A.W. Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia. Land 2021, 10, 1382. [Google Scholar] [CrossRef]
- Slamet, N.S.; Dargusch, P.; Aziz, A.A.; Wadley, D. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean. Coast. Manag. 2020, 195, 105283. [Google Scholar] [CrossRef]
- ASEAN State of Climate Change Report. Available online: https://asean.org/wp-content/uploads/2021/10/ASCCR-e-publication-Final-12-Oct-2021 (accessed on 10 April 2022).
- Hens, L.; Thinh, N.A.; Hanh, T.H.; Cuong, N.S.; Lan, T.D.; Van Thanh, N.; Le, D.T. Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis. Vietnam. J. Earth Sci. 2018, 40, 126–152. [Google Scholar] [CrossRef] [Green Version]
- Kantamaneni, K.; Rani, N.S.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L.C. A Systematic Review of Coastal Vulnerability Assessment Studies along Andhra Pradesh, India: A Critical Evaluation of Data Gathering, Risk Levels and Mitigation Strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Ritphring, S.; Nidhinarangkoon, P.; Udo, K.; Shirakawa, H. The Comparative Study of Adaptation Measure to Sea Level Rise in Thailand. J. Mar. Sci. Eng. 2021, 9, 588. [Google Scholar] [CrossRef]
- Sandhyavitri, A.; Fatnanta, F.; Husaini, R.R.; Suprayogi, I. Combination of a Coastal Vulnerability Index (CVI) and social economic approaches in prioritizing the development of Riau Coastlines, Indonesia. MATEC Web Conf. 2019, 276, 02006. [Google Scholar] [CrossRef] [Green Version]
- Irham, M.; Rusydi, I.; Haridhi, H.; Setiawan, I.; Ilhamsyah, Y.; Deli, A.; Rusdi, M.; Siregar, A. Coastal Vulnerability of the West Coast of Aceh Besar: A Coastal Morphology Assessment. J. Mar. Sci. Eng. 2021, 9, 815. [Google Scholar] [CrossRef]
- Jocson, M.D.; Magallon, S.V., Jr. Coastal vulnerability assessment: The case of Davao del Norte, Philippines. Mindanao J. Sci. Technol. 2018, 16, 61–80. [Google Scholar]
- Prasetyo, Y.T.; Senoro, D.B.; German, J.D.; Robielos, R.A.C.; Ney, F.P. Confirmatory factor analysis of vulnerability to natural hazards: A household Vulnerability Assessment in Marinduque Island, Philippines. Int. J. Disaster Risk Reduct. 2020, 50, 101831. [Google Scholar] [CrossRef]
- Mohd, F.A.; Maulud KN, A.; Karim, O.A.; Begum, R.A.; Awang, N.A.; Ahmad, A.; Mohtar WH, M.W. Comprehensive coastal vulnerability assessment and adaptation for Cherating-Pekan coast, Pahang, Malaysia. Ocean. Coast. Manag. 2019, 182, 104948. [Google Scholar] [CrossRef]
- Ariffin, E.H.; Terengganu, U.M.; Zulfakar, M.S.Z.; Redzuan, N.S.; Mathew, M.J.; Akhir, M.F.; Baharim, N.B.; Awang, N.A.; Mokhtar, N.A. Evaluating the effects of beach nourishment on littoral morphodynamics at kuala nerus, terengganu (malaysia). J. Sustain. Sci. Manag. 2020, 15, 29–42. [Google Scholar] [CrossRef]
- Jha, D.K.; Bhattacharyya, R.K.; Shyam, S.; Ratnayke, U.R. Indicator based assessment of integrated flood vulnerability index for Brunei Darussalam. Int. J. Disaster Risk Manag. 2020, 2, 47–70. [Google Scholar] [CrossRef]
- Horlings, J.; Marschke, M. Fishing, farming and factories: Adaptive development in coastal Cambodia. Clim. Dev. 2019, 12, 521–531. [Google Scholar] [CrossRef]
- Hirano, A. Effects of climate change on spatiotemporal patterns of tropical cyclone tracks and their implications for coastal agriculture in Myanmar. Paddy Water Environ. 2021, 19, 261–269. [Google Scholar] [CrossRef]
- Mandle, L.; Wolny, S.; Bhagabati, N.; Helsingen, H.; Hamel, P.; Bartlett, R.; Su Mon, M. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE 2017, 12, e0184951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nidhinarangkoon, P.; Ritphring, S. Assessment of coastal vulnerability to sea level rise: A case study of Prachuap Khiri Khan, Thailand. IOP Conf. Ser. Earth Environ. Sci. 2019, 326, 012005. [Google Scholar] [CrossRef]
- Rimba, A.B.; Osawa, T.; Parwata IN, S.; As-syakur, A.R.; Kasim, F.; Astarini, I.A. Physical assessment of coastal vulnerability under enhanced land subsidence in Semarang, Indonesia, using multi-sensor satellite data. Adv. Space Res. 2018, 61, 2159–2179. [Google Scholar]
- Lumban-Gaol, J.; Tambunan, E.; Osawa, T.; Pasaribu, B.; Nurjaya, I.W. Sea level rise impact on eastern coast of North Sumatra, Indonesia. In Proceedings of the 2nd international forum on sustainable future in Asia, 2nd NIES international forum, Bali, Indonesia, 26–28 January 2017. [Google Scholar]
- Bera, R.; Maiti, R. An assessment of coastal vulnerability using geospatial techniques. Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, X. Characteristics of Coastline Changes on Southeast Asia Islands from 2000 to 2015. Remote Sens. 2020, 12, 519. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Li, X.; Saito, Y.; Liu, J.P.; Duan, Y.; Zhang, L. Recent evolution of the Irrawaddy (Ayeyarwady) Delta and the impacts of anthropogenic activities: A review and remote sensing survey. Geomorphology 2020, 365, 107231. [Google Scholar] [CrossRef]
- Fitri, A.; Hashim, R.; Abolfathi, S.; Maulud, K.N.A. Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Minderhoud, P.S.J.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean. Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Brown, J.M.; Morrissey, K.; Knight, P.; Prime, T.D.; Almeida, L.P.; Masselink, G.; Plater, A.J. A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean. Coast. Manag. 2018, 163, 101–112. [Google Scholar] [CrossRef]
- Schmitt, R.; Rubin, Z.; Kondolf, G. Losing ground—scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology 2017, 294, 58–69. [Google Scholar] [CrossRef]
- Ehsan, S.; Begum, R.A.; Maulud, K.N.A. Household external vulnerability due to climate change in Selangor coast of Malaysia. Clim. Risk Manag. 2022, 35, 100408. [Google Scholar] [CrossRef]
- Arkema, K.K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Morato, J.; Peixoto, H.; Botero, V.; Zuluaga, L.; Figueroa, A. Sustainability Assessment of indicators for integrated water resources management. Sci. Total Environ. 2017, 578, 139–147. [Google Scholar] [CrossRef]
- Rashidi, A.M.; Jamal, M.; Hassan, M.; Sendek, S.M.; Sopie, S.M.; Hamid, M.A. Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review. Water 2021, 13, 1741. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Su, F. An index-based spatial evaluation model of exploitative intensity: A case study of coastal zone in Vietnam. J. Geogr. Sci. 2018, 28, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Vann, S.; Puttiwongrak, A.; Suteerasak, T.; Koedsin, W. Delineation of Seawater Intrusion Using Geo-Electrical Survey in a Coastal Aquifer of Kamala Beach, Phuket, Thailand. Water 2020, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Balasuriya, A. Coastal area management: Biodiversity and ecological sustainability in Sri Lankan perspective. In Biodiversity and Climate Change Adaptation in Tropical Islands; Academic Press: New York, NY, USA, 2018; pp. 701–724. [Google Scholar]
- Gumbira, G.; Harsanto, B. Decision support system for an eco-friendly integrated coastal zone management (ICZM) in Indo-nesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Albotoush, R.; Shau-Hwai, A.T. Evaluating Integrated Coastal Zone Management efforts in penang Malaysia. Ocean Coast. Manag. 2019, 181, 104899. [Google Scholar] [CrossRef]
- Zain, M.K.; Otsuyama, M.S.; Shaw, R. Climate Change Adaptation in Myanmar. In Climate Change Adaptation in South-East Asia; Springer: Singapore, 2022; pp. 117–127. [Google Scholar]
- Voyer, M.; Farmery, A.K.; Kajlich, L.; Vachette, A.; Quirk, G. Assessing policy coherence and coordination in the sustainable development of a Blue Economy. A case study from Timor Leste. Ocean Coast. Manag. 2020, 192, 105187. [Google Scholar] [CrossRef]
- Narcise, C.I.; Padayao, D. Harnessing the Power of an Informed Public for Coastal Management. In Local Contributions to Global Sustainable Agenda: Case Studies in Integrated Coastal Management in the East Asian Seas Region; Partnerships in Environmental Management for the Seas of East Asia (PEMSEA) and Coastal Management Center (CMC): Quezon City, Philippines, 2018; pp. 111–120. [Google Scholar]
Country | Number of Reported Killed People | Number of Affected People |
---|---|---|
Indonesia | 3600 | 0.8 million |
Malaysia | 600 | 0.1 million |
Philippines | 14,180 | 30 million |
Sri Lanka | 4500 | 2.9 million |
Thailand | 5200 | 6.8 million |
Vietnam | 4700 | 8.3 million |
Total World | 200,140 | 1.4 billion |
% Southeast Asia country from Total World | 16 | 35 |
Type of Data | Data Availability | Purpose | Reference |
---|---|---|---|
Conventional | Sea level rise | To understand the changes in sea level | Kantamaneni et al. [38] |
Spatial, conventional | RADAR band X, cyclone | To gather data on landfalling storm and cyclone | Rimba et al. [51] |
Conventional | Tide and wave | To collect in situ data on water level and wave parameter | Lumban-Gaol et al. [52] |
Conventional | Toposheet | To collect data on shoreline changes, geomorphic parameters, and base map | Bera and Maiti [53] |
Spatial | Land used satellite (LANDSAT) | To prepare map, geomorphology, and shoreline changes | Zhang and Hou [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, N.M.; Abdul Maulud, K.N. Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia. J. Mar. Sci. Eng. 2022, 10, 595. https://doi.org/10.3390/jmse10050595
Noor NM, Abdul Maulud KN. Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia. Journal of Marine Science and Engineering. 2022; 10(5):595. https://doi.org/10.3390/jmse10050595
Chicago/Turabian StyleNoor, Noorashikin Md, and Khairul Nizam Abdul Maulud. 2022. "Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia" Journal of Marine Science and Engineering 10, no. 5: 595. https://doi.org/10.3390/jmse10050595
APA StyleNoor, N. M., & Abdul Maulud, K. N. (2022). Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia. Journal of Marine Science and Engineering, 10(5), 595. https://doi.org/10.3390/jmse10050595