Feedback between Basin Morphology and Sediment Transport at Tidal Inlets: Implications for Channel Shoaling
Abstract
:1. Introduction
2. Methods
2.1. CMS Domain
2.2. Initial Bay Bathymetry
2.2.1. Systematically Varying Hypsometric Curves between Cases
- y = non-dimensional bed elevation that can range from 0 to 1;
- R = non-dimensional bay area that can range from 0 to 1;
- r = non-dimensional constant that can range from 0.01 to 0.5;
- z = non-dimensional constant exponent that can range from 0.03 to 2.
2.2.2. Developing Idealized Bathymetry from a Range of Hypsographs
2.3. Tidal Forcing
2.4. Wave Record Selection
2.5. Analysis Techniques
2.5.1. Morphology and Elevation Data
2.5.2. Tidal Asymmetry
3. Results
3.1. Morpho-Sedimentary Evolution
3.1.1. HC1 Morphology
3.1.2. HC2 Morphology
3.1.3. HC3 Morphology
3.1.4. HC4 Morphology
3.1.5. IHC1 Morphology
3.2. Morphodynamic Change by Region
3.2.1. Net Sediment Transport between Regions of the Domain
3.2.2. Relative Intertidal Area
3.2.3. Intertidal Area vs. the Rate of Bay Volume Change
3.3. Tidal Asymmetry
3.3.1. Peak Velocity and Tidal Duration Asymmetry
3.3.2. Tidal Asymmetry vs. Intertidal Area
3.4. Hypsometry
3.4.1. Hypsometry in Ebb-Dominant Simulations
3.4.2. Hypsometry in Flood-Dominant Cases
3.4.3. Hypsometry Convergence and Dependence on Initial Bathymetry
4. Discussion
4.1. Implications of Basin Hypsometry to Navigation
4.2. Implications of Sediment Placement in Inter-Tidal Areas to Navigation
4.3. Implications of Land Reclamation to Navigation
4.4. Sediment Flux versus Intertidal Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Komar, P.D. Beach Processes and Sedimentation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Inniss, L.; Simcock, A.; Ajawin, A.Y.; Alcala, A.C.; Bernal, P.; Calumpong, H.P.; Araghi, P.E.; Green, S.O.; Harris, P.; Kamara, O.K.; et al. The First Global Integrated Marine Assessment; United Nations: New York, NY, USA, 2016; Volume 1, p. 23, Volume 4, p. 6. [Google Scholar]
- Dronkers, J. Tidal Asymmetry and Estuarine Morphology. Neth. J. Sea Res. 1986, 20, 117–131. [Google Scholar] [CrossRef]
- Friedrichs, C.T.; Aubrey, D.G. Non-Linear Tidal Distortion in Shallow Well-mixed Estuaries: A Synthesis. Estuar. Coast. Shelf Sci. 1988, 27, 521–545. [Google Scholar] [CrossRef]
- Speer, P.; Aubrey, D. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II: Theory. Estuar. Coast. Shelf Sci. 1985, 21, 207–224. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Boon, J.D.; Byrne, R.J. On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar. Geol. 1981, 40, 27–48. [Google Scholar] [CrossRef]
- Townend, I.H. Hypsometry of Estuaries, Creeks and Breached Sea Wall Sites. Proc. Inst. Civ. Eng.-Marit. Eng. 2008, 161, 23–32. [Google Scholar] [CrossRef]
- Leuven, J.R.; Selakovic, S.; Kleinhans, M.G. Morphology of bar-built estuaries: Empirical relation between planform shape and depth distribution. Earth Surf. Dyn. 2018, 6, 763–778. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.M.; MacDonald, G.M.; Ambrose, R.F.; Buffington, K.J.; Freeman, C.M.; Janousek, C.N.; Brown, L.N.; Holmquist, J.R.; Guntenspergen, G.R.; Powelson, K.W.; et al. Effects of Climate Change on Tidal Marshes along a Latitudinal Gradient in California (No. 2016-1125); US Geological Survey: Reston, VA, USA, 2016. [CrossRef] [Green Version]
- Blanton, J.O.; Lin, G.; Elston, S.A. Tidal Current Asymmetry in Shallow Estuaries and Tidal Creeks. Cont. Shelf Res. 2002, 22, 1730–1743. [Google Scholar] [CrossRef]
- Guo, L.; Brand, M.; Sanders, B.F.; Foufoula-Georgiou, E.; Stein, E.D. Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise. Adv. Water Resour. 2018, 121, 1–8. [Google Scholar] [CrossRef]
- Cayocca, F. Long-term morphological modeling of a tidal inlet: The Arcachon Basin, France. Coast. Eng. 2001, 42, 115–142. [Google Scholar] [CrossRef]
- Dissanayake, D.; Roelvink, J.; Van der Wegen, M. Modelled channel patterns in a schematized tidal inlet. Coast. Eng. 2009, 56, 1069–1083. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Flemming, B.; Gao, S. Scale-dependent characteristics of equilibrium morphology of tidal basins along the Dutch-German North Sea Coast. Mar. Geol. 2014, 348, 63–72. [Google Scholar] [CrossRef]
- Boelens, T.; Qi, T.; Schuttelaars, H.; De Mulder, T. Morphodynamic equilibria in short tidal basins using a 2DH exploratory model. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005555. [Google Scholar] [CrossRef]
- Nahon, A.; Bertin, X.; Fortunato, A.B.; Oliveira, A. Process-based 2dh morphodynamic modeling of tidal inlets: A comparison with empirical classifications and theories. Mar. Geol. 2012, 291, 1–11. [Google Scholar] [CrossRef]
- Van der Wegen, M.; Roelvink, J.A. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J. Geophys. Res. Oceans 2008, 113, C3. [Google Scholar] [CrossRef] [Green Version]
- Styles, R.; Brown, M.E.; Brutsché, K.E.; Li, H.; Beck, T.M.; Sánchez, A. Long-Term Morphological Modeling of Barrier Island Tidal Inlets. J. Mar. Sci. Eng. 2016, 4, 65. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.G.; Dalrymple, R.A. Coastal Processes with Engineering Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- van Rijn, L. Two-Dimensional Vertical Mathematical Model for Suspended Sediment Transport by Currents and Waves; Report S488-IV; Delft Hydraulics: Delft, The Netherlands, 1985. [Google Scholar]
- National Oceanic and Atmospheric Administration. Harmonic Constituents for 9418767, North Spit CA. Available online: https://tidesandcurrents.noaa.gov/harcon.html?unit=0&timezone=0&id=9418767&name=North+Spit&state=CA (accessed on 28 February 2022).
- Rosati, J.D.; Walton, T.L.; Bodge, K. Longshore Sediment Transport. In Coastal Engineering Manual, Part III, Coastal Sediment Processes, III-2-2, EM 1110-2-1100; U.S. Army Corps of Engineers: Washington, DC, USA, 2002. [Google Scholar]
- Baar, A.W.; Boechat Albernaz, M.; Van Dijk, W.M.; Kleinhans, M.G. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 2019, 10, 4903. [Google Scholar] [CrossRef] [Green Version]
- LeConte, L.J. Discussion of Notes on the improvement of river and harbor outlets in the United States. Trans. Am. Soc. Civ. Eng. 1905, 55, 306–308. [Google Scholar] [CrossRef]
- O’Brien, M.P. Estuary tidal prisms related to entrance areas. Civ. Eng. 1931, 1, 738–739. [Google Scholar]
- O’Brien, M.P. Equilibrium flow areas of inlets on sandy coasts. J. Waterw. Harb. Div. Am. Soc. Civ. Eng. 1969, 96, 43–52. [Google Scholar] [CrossRef]
- Jarrett, J.T. Tidal Prism-Inlet Area Relationships. In GITI Report 3; U.S. Army Corps of Engineers: Vicksburg, MS, USA, 1976. [Google Scholar]
- Walton, T.L.; Adams, W.D. Capacity of Inlet Outer Bars to Store Sand. Coast. Eng. Proc. 1976, 1, 1919–1937. [Google Scholar] [CrossRef]
- Hicks, D.M.; Hume, T.M. Morphology and Size of Ebb Tidal Deltas at Natural Inlets on Open-Sea and Pocket-Bay Coasts, North Island, New Zealand. J. Coast. Res. 1996, 12, 47–63. Available online: https://www.jstor.org/stable/4298459 (accessed on 16 March 2022).
- Wright, L.D. Sediment transport and deposition at river mouths: A synthesis. Geol. Soc. Am. Bull. 1997, 88, 857–868. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Slingerland, R.L. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. J. Geophys. Res. Earth Surf. 2007, 112, F2. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.M.; Kraus, N.C. Ebb-tidal delta development where before there was none, Shark River Inlet, New Jersey. Proc. Coast. Sediments 2011, 3, 458–471. [Google Scholar] [CrossRef]
- Beck, T.M.; Kraus, N.C. New ebb-tidal delta at an old inlet, Shark River Inlet, New Jersey. J. Coast. Res. 2011, 59, 98–110. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Edmonds, D.A.; Nardin, W.; Leonardi, N.; Canestrelli, A.; Falcini, F.; Jerolmack, D.J.; Mariotti, G.; Rowland, J.C.; Slingerland, R.L. Dynamics of river mouth deposits. Rev. Geophys. 2015, 53, 642–672. [Google Scholar] [CrossRef] [Green Version]
- van Maanen, B.; Coco, G.; Bryan, K.R. Modelling the effects of tidal range and initial bathymetry on the morpho-logical evolution of tidal embayments. Geomorphology 2013, 191, 23–34. [Google Scholar] [CrossRef]
- Boelens, T.; Schuttelaars, H.; Schramkowski, G.; De Mulder, T. The effect of geometry and tidal forcing on hydrodynamics and net sediment transport in semi-enclosed tidal basins. Ocean. Dyn. 2018, 68, 1285–1309. [Google Scholar] [CrossRef]
- Robins, P.E.; Davies, A.G. Morphological controls in sandy estuaries: The influence of tidal flats and bathymetry on sediment transport. Ocean. Dyn. 2010, 60, 503–517. [Google Scholar] [CrossRef]
- Lanzoni, S.; Seminara, G. On tide propagation in convergent estuaries. J. Geophys. Res. Ocean. 1998, 103, 30793–30812. [Google Scholar] [CrossRef]
- Seabergh, W.C.; Cialone, M.A.; McCormick, J.W.; Watson, K.D.; Chasten, M.A. Monitoring Barnegat Inlet, New Jersey, South Jetty Realignment; ERDC/CHL TR-03-9; Engineer Research and Development Center, Coastal and Hydraulics Lab.: Vicksburg, MS, USA, 2003. [Google Scholar]
- Traynum, S.; Styles, R. Exchange flow between two estuaries connected by a shallow tidal channel. J. Coast. Res. 2008, 24, 1260–1268. [Google Scholar] [CrossRef]
- Healy, G.M.; Hickey, K.R. Historic land reclamation in the intertidal wetlands of the Shannon estuary, western Ireland. J. Coast. Res. 2002, 36, 365–373. [Google Scholar] [CrossRef]
Case | Added Sediment (M m3) | Intertidal Area (%) | Intertidal Storage (M m3) | Represented Scenario |
---|---|---|---|---|
HC1 | 183 | 81 | 56 | Large intertidal flats |
HC2 | 98 | 8 | 95 | Shallow sub-tidal areas |
HC3 | 51 | 2 | 96 | Deep sub-tidal areas |
HC4 | 0 | 2 | 96 | Featureless bathymetry |
IHC1 | 135 | 48 | 54 | Land reclamation |
Tidal Constituent | Amplitude (m) | Phase (Deg) |
---|---|---|
M2 | 0.7 | 215.1 |
S2 | 0.175 | 236.6 |
N2 | 0.148 | 190.5 |
K1 | 0.401 | 233.4 |
M4 | 0.012 | 200.6 |
O1 | 0.249 | 217.2 |
P1 | 0.126 | 231.3 |
SA | 0.065 | 225.2 |
K2 | 0.047 | 228.3 |
Q1 | 0.044 | 211.3 |
SSA | 0.038 | 264.1 |
NU2 | 0.029 | 194.5 |
L2 | 0.016 | 225.2 |
Case | Added Sediment (M m3) | Intertidal Area (%) | Intertidal Storage (M m3) | |||
---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | |
HC1 | 183 | 118 | 81 | 62 | 56 | 71 |
HC2 | 98 | 81 | 8 | 17 | 95 | 91 |
HC3 | 51 | 67 | 2 | 16 | 96 | 90 |
HC4 | 0 | 22 | 2 | 9 | 96 | 93 |
IHC1 | 135 | 117 | 48 | 47 | 54 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krafft, D.R.; Styles, R.; Brown, M.E. Feedback between Basin Morphology and Sediment Transport at Tidal Inlets: Implications for Channel Shoaling. J. Mar. Sci. Eng. 2022, 10, 442. https://doi.org/10.3390/jmse10030442
Krafft DR, Styles R, Brown ME. Feedback between Basin Morphology and Sediment Transport at Tidal Inlets: Implications for Channel Shoaling. Journal of Marine Science and Engineering. 2022; 10(3):442. https://doi.org/10.3390/jmse10030442
Chicago/Turabian StyleKrafft, Douglas R., Richard Styles, and Mitchell E. Brown. 2022. "Feedback between Basin Morphology and Sediment Transport at Tidal Inlets: Implications for Channel Shoaling" Journal of Marine Science and Engineering 10, no. 3: 442. https://doi.org/10.3390/jmse10030442
APA StyleKrafft, D. R., Styles, R., & Brown, M. E. (2022). Feedback between Basin Morphology and Sediment Transport at Tidal Inlets: Implications for Channel Shoaling. Journal of Marine Science and Engineering, 10(3), 442. https://doi.org/10.3390/jmse10030442