Estimation of Total Suspended Matter Concentration of Ha Long Bay, Vietnam, from Formosat-5 Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Match-Up Data Set and In Situ Measurement Data
2.3. Materials
3. Methodology
3.1. Data Processing
3.2. Convert the DN into Rrs
- The atmospheric effect should be constant across the entire image.
- At least two consistent targets (bright and dark targets) should be easily identified in the scene.
- The spectral profiles of ground targets should be similar between FS5 and Landsat-8 OLI when images are captured less than 24 h apart.
- Linear regression should be performed to evaluate the relationship between the sensor’s radiance and surface reflectance.
3.3. TSM Concentration Algorithms
3.4. Accuracy Assessment
4. Results
4.1. FS5 Rrs Retrieval
4.2. FS5 Image-Derived TSM for Ha Long Bay, Vietnam
4.3. Comparing the Accuracy of FS5-Derived TSM and Landsat-8 OLI-Derived TSM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snelgrove, P.V.R.; Henry Blackburn, T.; Hutchings, P.A.; Alongi, D.M.; Frederick Grassle, J.; Hummel, H.; King, G.; Koike, I.; Lambshead, P.J.D.; Ramsing, N.B.; et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 1997, 26, 578–583. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Wang, H.; Li, D. Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens. Environ. 2009, 113, 2670–2681. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; et al. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 2019, 57, 271–286. [Google Scholar] [CrossRef]
- Volpe, V.; Silvestri, S.; Marani, M. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B. Potential of high spatial and temporal ocean color satellite data to study the dynamics of suspended particles in a micro-tidal river plume. Remote Sens. 2016, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Yuei-An, L.; Kar, S.K.; Chang, L. Use of high-resolution formosat-2 satellite images for post-earthquake disaster assessment: A study following the 12 may 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3355–3368. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, A.M.; Chern, J.S.; Chen, L.C.; Chang, W.Y. FORMOSAT-2 mission: Current status and contributions to earth observations. Proc. IEEE 2010, 98, 878–891. [Google Scholar] [CrossRef]
- Courault, D.; Bsaibes, A.; Kpemlie, E.; Hadria, R.; Hagolle, O.; Marloie, O.; Hanocq, J.F.; Olioso, A.; Bertrand, N.; Desfonds, V. Assessing the potentialities of FORMOSAT-2 data for water and crop monitoring at small regional scale in South-Eastern France. Sensors 2008, 8, 3460–3481. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.-J.; Chang, C.-H.; Liu, C.-C.; Yao, -S.C. 4Integration of MODIS and Formosat-2 Imagery for the Development of a Reliable and High-Tempospatial-Resolution Total Suspended Matter Concentration Retrieval Model: Case Study in Goaping River Mouth. J. Photogramm. Remote Sens. 2013, 17, 53–65. [Google Scholar]
- Chung, H.W.; Liu, C.C.; Chiu, Y.S.; Liu, J.T. Spatiotemporal variation of Gaoping River plume observed by Formosat-2 high resolution imagery. J. Mar. Syst. 2014, 132, 28–37. [Google Scholar] [CrossRef]
- Chang, C.H.; Liu, C.C.; Wen, C.G.; Cheng, I.F.; Tam, C.K.; Huang, C.S. Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery. J. Environ. Monit. 2009, 11, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Mograne, M.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of Five Atmospheric Correction Algorithms over French Optically-Complex Waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Chen, C. A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: A case study for the Pearl River Estuary. Remote Sens. Lett. 2014, 5, 249–257. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The assessment of landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- DeKeukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van derZande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Ariza, A.; Robredo Irizar, M.; Bayer, S. Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands. Eur. J. Remote Sens. 2018, 51, 765–776. [Google Scholar] [CrossRef]
- Karpouzli, E.; Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Pompilio, L.; Marinangeli, L.; Amitrano, L.; Pacci, G.; D’Andrea, S.; Iacullo, S.; Monaco, E. Application of the empirical line method (ELM) to calibrate the airborne Daedalus-CZCS scanner. Eur. J. Remote Sens. 2018, 51, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.P.; Qi, J.; Clarke, T.R. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Ngoc, D.D.; Loisel, H.; Vantrepotte, V.; Xuan, H.C.; Minh, N.N.; Verpoorter, C.; Meriaux, X.; Minh, H.P.T.; Thi, H.L.; Hong, H.L.V.; et al. A simple empirical band-ratio algorithm to assess suspended particulate matter from remote sensing over coastal and inland waters of vietnam: Application to the VNREDSat-1/NAOMI sensor. Water 2020, 12, 2636. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Miller, R.L.; Liu, C.C.; Buonassissi, C.J.; Wu, A.M. A multi-sensor approach to examining the distribution of total suspended matter (TSM) in the Albemarle-Pamlico Estuarine System, NC, USA. Remote Sens. 2011, 3, 962–974. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Huang, C.C.; Chang, M.J.; Lin, G.F.; Wu, M.C.; Wang, P.H. Real-time forecasting of suspended sediment concentrations reservoirs by the optimal integration of multiple machine learning techniques. J. Hydrol. Reg. Stud. 2021, 34, 100804. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Zheng, B. Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakot (2009). Cont. Shelf Res. 2018, 166, 54–64. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.H.; Ritchie, E.A.; Qiao, L.; Li, G.; Cheng, Z. Using 250-M surface reflectance MODIS Aqua/Terra product to estimate turbidity in a macro-tidal harbour: Darwin Harbour, Australia. Remote Sens. 2018, 10, 997. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Xiao, C.; Perrie, W.; Sun, D.; Wang, S.; Shen, H.; Yang, D.; He, Y. Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary. J. Geophys. Res. Ocean. 2017, 122, 276–290. [Google Scholar] [CrossRef]
- Qiu, Z. A simple optical model to estimate suspended particulate matter in Yellow River Estuary. Opt. Express 2013, 21, 27891. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Cui, Y.; Yan, S. Consistency of suspended particulate matter concentration in turbid water retrieved from sentinel-2 msi and landsat-8 oli sensors. Sensors 2021, 21, 1662. [Google Scholar] [CrossRef] [PubMed]
- Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional models for high-resolution retrieval of chlorophyll a and TSM concentrations in the Gorky Reservoir by Sentinel-2 imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef] [Green Version]
- Nazirova, K.; Alferyeva, Y.; Lavrova, O.; Shur, Y.; Soloviev, D.; Bocharova, T.; Strochkov, A. Comparison of in situ and remote-sensing methods to determine turbidity and concentration of suspended matter in the estuary zone of the mzymta river, black sea. Remote Sens. 2021, 13, 143. [Google Scholar] [CrossRef]
- Aswathy, T.S.; Achu, A.L.; Francis, S.; Gopinath, G.; Joseph, S.; Surendran, U.; Sunil, P.S. Assessment of water quality in a tropical ramsar wetland of southern India in the wake of COVID-19. Remote Sens. Appl. Soc. Environ. 2021, 23, 100604. [Google Scholar] [CrossRef]
- Loisel, H.; Vantrepotte, V.; Ouillon, S.; Ngoc, D.D.; Herrmann, M.; Tran, V.; Mériaux, X.; Dessailly, D.; Jamet, C.; Duhaut, T.; et al. Assessment and analysis of the chlorophyll-a concentration variability over the Vietnamese coastal waters from the MERIS ocean color sensor (2002–2012). Remote Sens. Environ. 2017, 190, 217–232. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Le, T.A. Situation Analysis of the Water Quality of Ha Long Bay, Quang Ninh Province, Vietnam: A Social Study from Tourism Businesses’ Perspectives; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Republic, S.; Ninh, Q.; People, P. The Project for Environmental Protection in Halong Bay. 2013, Volume 2. Available online: http://open_jicareport.jica.go.jp/pdf/1000021863_01.pdf (accessed on 20 June 2021).
- Nguyen, M.H.; Ouillon, S.; Vu, D.V. Seasonal variation of suspended sediment and its relationship with turbidity in Cam-Nam Trieu estuary, Hai Phong (Vietnam). Tạp chí Khoa học và Công nghệ Biển 2021, 21, 271–282. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S.; Thanh, T.D.; Chu, L.V. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci. 2014, 18, 3987–4005. [Google Scholar] [CrossRef] [Green Version]
- Vinh, V.D.; Uu, D. Vanthe Influence of Wind and Oceanographic Factors on Characteristics of Suspended Sediment Transport in Bach Dang Estuary. Tạp chí Khoa học và Công nghệ Biển 2013, 13, 216–226. [Google Scholar] [CrossRef]
- Tu, T.A. Đánh Giá Đặc Trưng Trầm Tích Lơ Lửng Khu Vực Cửa Sông Ven Biển Hải Phòng; ĐHKHTN: Ha Noi, Vietnam, 2012. [Google Scholar]
- Lin, T.H.; Chang, J.C.; Hsu, K.H.; Lee, Y.S.; Zeng, S.K.; Liu, G.R.; Tsai, F.A.; Chan, H.P. Radiometric variations of On-Orbit FORMOSAT-5 RSI from vicarious and cross-calibration measurements. Remote Sens. 2019, 11, 2634. [Google Scholar] [CrossRef] [Green Version]
- Harris Geospatial Solution, Inc. Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH). 2020. Available online: https://www.l3harrisgeospatial.com/docs/flaash.html (accessed on 26 April 2021).
- Vanhellemont, Q.; Ruddick, K. ACOLITE Processing for Sentinel-2 and Landsat-8: Atmospheric Correction and Aquatic Applications. 2016. Available online: http://odnature.naturalsciences.be/downloads/publications/oceanoptics2016quinten.pdf (accessed on 16 May 2021).
- Bernstein, L.S.; Adler-Golden, S.M.; Sundberg, R.L.; Levine, R.Y.; Perkins, T.C.; Berk, A.; Ratkowski, A.J.; Felde, G.; Hoke, M.L. Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA, 28 March–1 April 2005; Volume 5806, p. 668. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. Living Planet Symp. 2016, 740, 54. [Google Scholar]
- Baugh, W.M.; Groeneveld, D.P. Empirical proof of the empirical line. Int. J. Remote Sens. 2008, 29, 665–672. [Google Scholar] [CrossRef]
- Hamm, N.A.S.; Atkinson, P.M.; Milton, E.J. A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing. Remote Sens. Environ. 2012, 124, 666–678. [Google Scholar] [CrossRef]
- Clark, B.; Suomalainen, J.; Pellikka, P. The selection of appropriate spectrally bright pseudo-invariant ground targets for use in empirical line calibration of SPOT satellite imagery. ISPRS J. Photogramm. Remote Sens. 2011, 66, 429–445. [Google Scholar] [CrossRef]
Band | Wavelength (nm) | Resolution (m) | Gain | Offset |
---|---|---|---|---|
B1-Blue | 450–520 | 4 | 0.038072 | 0.000000 |
B2-Green | 520–600 | 4 | 0.031983 | 0.000000 |
B3-Red | 630–690 | 4 | 0.037822 | 0.000000 |
B4-Near Infrared | 760–900 | 4 | 0.029779 | 0.000000 |
Name | Number |
---|---|
Roof material | 26 |
Asphalts/concrete | 27 |
Water (lakes and reservoirs) | 51 |
Vegetation | 26 |
Others (sand, soil, rock) | 29 |
Landsat-8 OLI Level-2 | Formosat5-Rrs | TSM Algorithms | FS5-Derived TSM Images | RMSE (mg/L) |
---|---|---|---|---|
RrsFLAASH | Formosat-5 Rrs (version 1) | TSM (Algorithm 1) | FS5-derived TSM version 1 | 4.572 |
TSM (Algorithm 2) | FS5-derived TSM version 2 | 4.533 | ||
RrsUSGS | Formosat-5 Rrs (version 2) | TSM (Algorithm 1) | FS5-derived TSM version 3 | 4.562 |
TSM (Algorithm 2) | FS5-derived TSM version 4 | 4.533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chau, P.-M.; Wang, C.-K. Estimation of Total Suspended Matter Concentration of Ha Long Bay, Vietnam, from Formosat-5 Image. J. Mar. Sci. Eng. 2022, 10, 441. https://doi.org/10.3390/jmse10030441
Chau P-M, Wang C-K. Estimation of Total Suspended Matter Concentration of Ha Long Bay, Vietnam, from Formosat-5 Image. Journal of Marine Science and Engineering. 2022; 10(3):441. https://doi.org/10.3390/jmse10030441
Chicago/Turabian StyleChau, Pham-Minh, and Chi-Kuei Wang. 2022. "Estimation of Total Suspended Matter Concentration of Ha Long Bay, Vietnam, from Formosat-5 Image" Journal of Marine Science and Engineering 10, no. 3: 441. https://doi.org/10.3390/jmse10030441
APA StyleChau, P. -M., & Wang, C. -K. (2022). Estimation of Total Suspended Matter Concentration of Ha Long Bay, Vietnam, from Formosat-5 Image. Journal of Marine Science and Engineering, 10(3), 441. https://doi.org/10.3390/jmse10030441