Sea Level Change in the Canary Current System during the Satellite Era
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Cazenave, A.; Nerem, R.S. Present-day Sea level change: Observations and causes. Rev. Geophys. 2004, 42, 1077–1083. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 2019, 9, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Horton, B.P.; Rahmstorf, S.; Engelhart, S.E.; Kemp, A.C. Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat. Sci. Rev. 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Vermeer, M.; Rahmstorf, S. Global Sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C. Upper limit for sea level projections by 2100. Environ. Res. Lett. 2014, 9, 104008. [Google Scholar] [CrossRef] [Green Version]
- Overpeck, J.T.; Otto-Bliesner, B.L.; Miller, G.H.; Muhs, D.R.; Alley, R.B.; Kiehl, J.T. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 2006, 311, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 2014, 41, 3502–3509. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Rignot, E.; Mouginot, J.; Seroussi, H.; Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 2014, 7, 418–422. [Google Scholar] [CrossRef]
- Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Larnicol, G. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Chang. 2009, 65, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 2009, 36, L07608. [Google Scholar] [CrossRef]
- Cazenave, A.; Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.K.; Chambers, D.P.; Kuo, C.Y.; Shum, C.K. Global sea level rise: Recent progress and challenges for the decade to come. Oceanography 2010, 23, 26–35. [Google Scholar] [CrossRef]
- Leuliette, E.W.; Willis, J.K. Balancing the sea level budget. Oceanography 2011, 24, 122–129. Available online: http://www.jstor.org/stable/24861273 (accessed on 7 July 2022). [CrossRef]
- Barton, E.D.; Arıstegui, J.; Tett, P.; Cantón, M.; Garcıa-Braun, J.; Hernández-León, S.; Wild, K. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 1998, 41, 455–504. [Google Scholar] [CrossRef]
- Hernández-León, S.; Gomez, M.; Arístegui, J. Mesozooplankton in the Canary Current System: The coastal–ocean transition zone. Prog. Oceanogr. 2007, 74, 397–421. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Hernández-León, S.; Barton, E.D. Mesoscale distribution of fish larvae in relation to an upwelling filament off Northwest Africa. Deep Sea Res. Part I 1999, 46, 1969–1984. [Google Scholar] [CrossRef]
- Martín, J.L.; Marrero, M.V.; Del Arco, M.; Garzón, V. Aspectos clave para un plan de adaptación de la biodiversidad terrestre de Canarias al cambio climático. In Los Bosques y la Biodiversidad Frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015; Chapter 53; pp. 573–580. [Google Scholar]
- Nurse, L.A.; Mclean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V. Small islands. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1613–1654. [Google Scholar]
- Kelman, I.; Khan, S. Progressive climate change and disasters: Island perspectives. Nat. Hazards 2013, 69, 1131–1136. [Google Scholar] [CrossRef]
- Ablain, M.; Philipps, S.; Picot, N.; Bronner, E. Jason-2 global statistical assessment and cross-calibration with Jason-1. Mar. Geod. 2010, 33, 162–185. [Google Scholar] [CrossRef]
- Ablain, M.; Legeais, J.F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H.B.; Cazenave, A. Satellite altimetry-based sea level at global and regional scales. Surv. Geophys. 2017, 38, 7–31. [Google Scholar] [CrossRef]
- Neuer, S.; Cianca, A.; Helmke, P.; Freudenthal, T.; Davenport, R.; Meggers, H.; Llinás, O. Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC. Prog. Oceanogr. 2007, 72, 1–29. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast Conserv. 2018, 22, 1001–1015. [Google Scholar] [CrossRef]
- Fotos Aaéreas de Canarias. Available online: https://www.fotosaereasdecanarias.com/ (accessed on 7 July 2022).
- Olcina, J. Turismo y cambio climático: Una actividad vulnerable que debe adaptarse. Investig. Turísticas 2012, 4, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Vallis, G.K. El Niño: A chaotic dynamical system? Science 1986, 232, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gesteira, M.; De Castro, M.; Álvarez, I.; Lorenzo, M.N.; Gesteira, J.L.G.; Crespo, A.J.C. Spatio-temporal upwelling trends along the canary upwelling system (1967–2006). Ann. N. Y. Acad. Sci. 2008, 1146, 320–337. [Google Scholar] [CrossRef]
- Barton, A.D.; Pershing, A.J.; Litchman, E.; Record, N.R.; Edwards, K.F.; Finkel, Z.V.; Ward, B.A. The biogeography of marine plankton traits. Ecol. Lett. 2013, 16, 522–534. [Google Scholar] [CrossRef]
- Narayan, N.; Paul, A.; Mulitza, S.; Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 2010, 6, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Pardo, P.C.; Padn, X.A.; Gilcoto, M.; Farina-Busto, L.; Pérez, F.F. Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and ekman transport. Clim. Res. 2011, 48, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Cropper, T.E.; Hanna, E.; Bigg, G.R. Spatial and temporal seasonal trends in coastal upwelling off northwest africa, 1981–2012. Deep Sea Res. Part I 2014, 86, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Garín-Muñoz, T.; Montero-Martín, L.F. Tourism in the Balearic Islands: A dynamic model for international demand using panel data. Tour. Manag. 2007, 28, 1224–1235. [Google Scholar] [CrossRef]
- Peña-Alonso, C.; Pérez-Chacón, E.; Hernández-Calvento, L.; Ariza, E. Assessment of scenic, natural and cultural heritage for sustainable management of tourist beaches. A case study of Gran Canaria island (Spain). Land Use Policy 2018, 72, 35–45. [Google Scholar] [CrossRef]
- Gouzenes, Y.; Léger, F.; Cazenave, A.; Birol, F.; Bonnefond, P.; Passaro, M.; Benveniste, J. Coastal sea level rise at Senetosa (Corsica) during the Jason altimetry missions. Ocean Sci. 2020, 16, 1165–1182. [Google Scholar] [CrossRef]
- Ruiz-Etcheverry, L.A.; Saraceno, M. Sea level trend and fronts in the South Atlantic Ocean. Geosciences 2020, 10, 218. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.; Wouters, B. Global sea-level budget 1993-present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar] [CrossRef] [Green Version]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, I.; Lorenzo, M.N.; Lázaro, C.; Fernandes, M.J.; Bastos, L. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns. Sci. Total Environ. 2017, 609, 861–874. [Google Scholar] [CrossRef]
- Kostianaia, E.A.; Kostianoy, A.G. Regional Climate Change Impact on Coastal Tourism: A Case Study for the Black Sea Coast of Russia. Hydrology 2021, 8, 133. [Google Scholar] [CrossRef]
- Meli, M.; Olivieri, M.; Romagnoli, C. Sea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite Altimetry. Remote Sens. 2021, 13, 97. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Calafat, F.M.; Woppelmann, G. Sea level changes at Tenerife Island (NE Tropical Atlantic) since 1927. J. Geophys. Res. Oceans 2013, 118, 4899–4910. [Google Scholar] [CrossRef] [Green Version]
- Valdés, L.; Déniz-González, I. Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem; IOC-UNESCO: Paris, France, 2015; Available online: http://hdl.handle.net/1834/9135 (accessed on 7 July 2022).
Average | North | Centre | South | Upwelling | |
---|---|---|---|---|---|
Average | 3.483 | 3.509 | 3.586 | 3.468 | 3.351 |
Max | 12.226 | 13.942 | 13.303 | 14.883 | 15.096 |
Min | −6.327 | −7.604 | −6.417 | −7.197 | −6.120 |
Slope | 0.024 | 0.024 | 0.026 | 0.025 | 0.023 |
Offset | −0.502 | 0.387 | −0.637 | −0.598 | 0.462 |
Open Ocean | Upwelling | |||||||
---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | |
Mean | 0.678 | 0.212 | 5.881 | 7.357 | 0.763 | 0.183 | 2.934 | 9.697 |
Max | 7.195 | 5.054 | 11.071 | 11.816 | 7.390 | 4.837 | 8.157 | 15.090 |
Min | −4.534 | −5.614 | −0.610 | 2.073 | −2.900 | −3.923 | −3.417 | 4.113 |
Slope | 0.348 | 0.279 | 0.270 | 0.277 | 0.197 | 0.297 | 0.336 | 0.279 |
Offset | −4.196 | −3.539 | 2.096 | 3.481 | −1.999 | −3.980 | −1.764 | 5.794 |
Open Ocean | Upwelling | ||||||
---|---|---|---|---|---|---|---|
NAO | AMO | CHL | SST | NAO | AMO | CHL | SST |
−0.1341 | 0.3542 | −0.3566 | 0.7525 | −0.0952 | 0.3303 | −0.4687 | 0.6522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrero-Betancort, N.; Marcello, J.; Rodríguez-Esparragón, D.; Hernández-León, S. Sea Level Change in the Canary Current System during the Satellite Era. J. Mar. Sci. Eng. 2022, 10, 936. https://doi.org/10.3390/jmse10070936
Marrero-Betancort N, Marcello J, Rodríguez-Esparragón D, Hernández-León S. Sea Level Change in the Canary Current System during the Satellite Era. Journal of Marine Science and Engineering. 2022; 10(7):936. https://doi.org/10.3390/jmse10070936
Chicago/Turabian StyleMarrero-Betancort, Nerea, Javier Marcello, Dionisio Rodríguez-Esparragón, and Santiago Hernández-León. 2022. "Sea Level Change in the Canary Current System during the Satellite Era" Journal of Marine Science and Engineering 10, no. 7: 936. https://doi.org/10.3390/jmse10070936
APA StyleMarrero-Betancort, N., Marcello, J., Rodríguez-Esparragón, D., & Hernández-León, S. (2022). Sea Level Change in the Canary Current System during the Satellite Era. Journal of Marine Science and Engineering, 10(7), 936. https://doi.org/10.3390/jmse10070936