Optimizing Source Wavelets Extracted from the Chirp Sub-Bottom Profiler Using an Adaptive Filter with Machine Learning
Abstract
:1. Introduction
2. Material and Methods
2.1. Theoretical Background of Adaptive Filters in Machine Learning
2.2. Acoustic Characteristics of a Chirp Wavelet
3. Results and Discussion
3.1. Chirp Wavelet Processing
3.2. Chirp SBP Source Wavelet Extraction
3.2.1. Ideal Source Wavelet (Source I)
3.2.2. Source Wavelet Extraction Using the Adaptive Filter (Sources II and III)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.B. A Study on the MATLAB-Based Chirp SBP Data Processing and Field Application. Ph.D. Thesis, Dong-A University, Busan, Korea, 2015. [Google Scholar]
- Bull, J.M.; Quinn, R.; Dix, J.K. Reflection coefficient calculation from marine high resolution seismic reflection (chirp) data and application to an archaeological case study. J. Mar. Geophys. Res. 1998, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Park, K.P.; Lee, H.Y.; Koo, N.H.; Kim, K.O.; Kang, M.H.; Jang, S.N.; Kim, Y.G. 240 channel marine seismic data acquisition by Tamhae II. Geophys. Geophys. Explor. 1999, 2, 77–85. [Google Scholar]
- Kim, H.D.; Kim, J.H. Horizontal distance correction of single channel marine seismic data. Geophys. Geophys. Explor. 2004, 7, 245–250. [Google Scholar]
- Kim, W.S.; Kim, H.D.; Kim, C.S.; Kim, Y.J.; Joo, Y.H.; Hwang, K.D. 3D seismic profiling with small vessel using integral equipment. In Proceedings of the 2014 KOSME Fall Conference, Busan, Korea, 15 April 2014; p. 192. [Google Scholar]
- Gutowski, M.; Bull, J.M.; Dix, J.K.; Henstock, T.J.; Hogarth, P.; Hiller, T.; Leighton, T.G.; White, P.R. 3D high-resolution acoustic imaging of the sub-seabed. Appl. Acoust. 2008, 69, 262–271. [Google Scholar] [CrossRef]
- Plets, R.; Dix, J.; Bastos, A.; Best, A. Characterization of buried inundated peat on seismic (Chirp) data inferred from core information. J. Archaeol. Prospect. 2007, 14, 261–272. [Google Scholar] [CrossRef]
- Vardy, M.E.; Dix, J.K.; Henstock, T.J.; Bull, J.M.; Gutowski, M. Decimeter-resolution 3D seismic volume in shallow water: A case study in small-object detection. Geophysics 2008, 73, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B. A Study on Extraction of Acoustic Seafloor Sediments Classification Parameters. Ph.D. Thesis, Dong-A University, Busan, Korea, 2008. [Google Scholar]
- Shin, S.R.; Kim, C.S.; Jo, C.H. A study on the shallow marine site survey using seismic reflection and refraction method. Mulli-Tamsa 2008, 11, 109–115. [Google Scholar]
- Kim, J.H.; Chung, S.K.; Bai, J.K.; Park, C.W. Sub-bottom profiling of Bukhang area at Pusan. J. Ocean Resour. Res. Inst. 1996, 9, 13–19. [Google Scholar]
- Shin, S.Y.; Kim, J.W.; Kim, T.S.; Ok, S.J.; Ha, Y.S. A case study on the frequency characteristic of seismic source for shallow marine site survey application. In Proceedings of the 2010 KOSME Spring Conference, Busan, Korea, 25 June 2010; pp. 497–498. [Google Scholar]
- Jang, J.K. Classification of Seabed Sediments by Attenuation Characteristics Analysis of Chirp Signal. Ph.D. Thesis, Han-Yang University, Seoul, Korea, 1999. [Google Scholar]
- Ronchi, L.; Fontana, A.; Correggiari, A.; Asioli, A. Late quaternary incised and infilled landforms in the shelf of the northern Adriatic Sea (Italy). Mar. Geol. 2018, 405, 47–67. [Google Scholar] [CrossRef]
- Chang, J.K.; Kim, H.J.; Jou, H.T.; Suk, B.C.; Park, G.T.; Yoo, H.S.; Yang, S.J. Seabed classification using the K-L (Karhunen-Loève) transform of chirp acoustic profiling data: An effective approach to geoacoustic modeling. Sea 1998, 3, 158–164. [Google Scholar]
- Fakiris, E.; Zoura, D.; Ramfos, A.; Spinos, E.; Georgiou, N.; Ferentinos, G.; Papatheodorou, G. Object-based classification of sub-bottom profiling data for benthic habitat mapping: Comparison with sidescan and RoxAnn in a Greek shallow-water habitat. Estuar. Coast Shelf Sci. 2018, 208, 219–234. [Google Scholar] [CrossRef]
- Ferentinos, G.; Fakiris, E.; Christodoulou, D.; Geraga, M.; Dimas, X.; Georgiou, N.; Kordella, S.; Papatheodorou, G.; Prevenios, M.; Sotiropoulos, M. Optimal sidescan sonar and subbottom profiler surveying of ancient wrecks: The ‘Fiskardo’ wreck, Kefallinia Island, Ionian Sea. J. Archaeol. Sci. 2020, 113, 105032. [Google Scholar] [CrossRef]
- The Society of Exploration Geophysicists (SEG), Dictionary: Klauder Wavelet. Dictionary: Klauder Wavelet—SEG Wiki. (n.d.). Available online: https://wiki.seg.org/wiki/Dictionary:Klauder_wavelet/en (accessed on 10 March 2022).
- Kim, H.D. Development of the PC-Based GPS Linked High-Resolution Multi-Channel Marine Seismic Profiling System. Ph.D. Thesis, Dong-A University, Busan, Korea, 2004. [Google Scholar]
- Haykin, S. Adaptive Filter Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 2003; ISBN 978-0132671453. [Google Scholar]
- Trauth, M.H. MATLAB Recipes for Earth Sciences, 4th ed.; Springer: New York, NY, USA, 2015; ISBN 978-3-662-46244-7. [Google Scholar]
- Hattingh, M.A. New data adaptive filtering program to remove noise from geophysical time- or space series data. Comput. Geosci. 1988, 14, 467–480. [Google Scholar] [CrossRef]
- Widrow, B.; Hoff, M.E. Adaptive switching circuits. IRE WESCON Conv. Rec. 1960, 4, 96–104. [Google Scholar]
- Tamura, L.N.; Almeida, R.P.; Galeazzi, C.P.; Freitas, B.T.; Ianniruberto, M.; Prado, A.H. Upper-bar deposits in large Amazon rivers: Occurrence, morphology and internal structure. Sediment. Geol. 2019, 387, 1–17. [Google Scholar] [CrossRef]
- KIGAM. Regional Survey of the Korea Continental Shelf for Deep Geologic Structure Mapping; Ministry of Commerce, Industry and Energy Korea: Daejeon, Korea, 2006; pp. 27–40. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-B.; Park, H.-L. Optimizing Source Wavelets Extracted from the Chirp Sub-Bottom Profiler Using an Adaptive Filter with Machine Learning. J. Mar. Sci. Eng. 2022, 10, 449. https://doi.org/10.3390/jmse10040449
Kim S-B, Park H-L. Optimizing Source Wavelets Extracted from the Chirp Sub-Bottom Profiler Using an Adaptive Filter with Machine Learning. Journal of Marine Science and Engineering. 2022; 10(4):449. https://doi.org/10.3390/jmse10040449
Chicago/Turabian StyleKim, Sung-Bo, and Hong-Lyun Park. 2022. "Optimizing Source Wavelets Extracted from the Chirp Sub-Bottom Profiler Using an Adaptive Filter with Machine Learning" Journal of Marine Science and Engineering 10, no. 4: 449. https://doi.org/10.3390/jmse10040449
APA StyleKim, S. -B., & Park, H. -L. (2022). Optimizing Source Wavelets Extracted from the Chirp Sub-Bottom Profiler Using an Adaptive Filter with Machine Learning. Journal of Marine Science and Engineering, 10(4), 449. https://doi.org/10.3390/jmse10040449