Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Assimilation Scheme
2.2. Experiment Method
2.3. Gyeonggi Bay Numerical Ocean Model
2.4. GIN-SST (Instantly Reconstructed SST Field Using GIN)
3. Result
3.1. GIN-SST
3.2. Result of CTRL and WGIN
3.2.1. Sea Surface Temperature
3.2.2. Comparison between Forecasts and Buoy Observations
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Ocean 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Park, K.S.; Heo, K.Y.; Jun, K.; Kwon, J.I.; Kim, J.; Choi, J.Y.; Cho, K.H.; Choi, B.J.; Seo, S.N.; Kim, Y.H. Development of the operational oceanographic system of Korea. Ocean Sci. J. 2015, 50, 353–369. [Google Scholar] [CrossRef]
- MacLachlan, C.; Arribas, A.; Peterson, K.A.; Maidens, A.; Fereday, D.; Scaife, A.A.; Gordon, M.; Vellinga, M.; Williams, A.; Corner, R.E. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. 2015, 141, 1072–1084. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Mourre, B.; Mestres, M.; Lorente, P.; Aznar, R.; Garcia-Leon, M.; Liste, M.; Santana, A.; Espino, M.; Álvarez, E. Evaluation of the operational CMEMS and coastal downstream ocean forecasting services during the storm Gloria (January 2020). Front. Mar. Sci. 2021, 8, 300. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, J.H.; Choi, Y. Comparison of Data Assimilation Methods in a Regional Ocean Circulation Model for the Yellow and East China Seas. Ocean Polar Res. 2020, 42, 179–194. [Google Scholar]
- Margvelashvili, N.; Andrewartha, J.; Herzfeld, M.; Robson, B.J.; Brando, V.E. Satellite data assimilation and estimation of a 3D coastal sediment transport model using error-subspace emulators. Environ. Model. Softw. 2013, 40, 191–201. [Google Scholar] [CrossRef]
- Yang, J.; Ding, S.; Dong, P.; Bi, L.; Yi, B. Advanced radiative transfer modeling system developed for satellite data assimilation and remote sensing applications. J. Quant. Spectrosc. Radiat. Transf. 2020, 251, 107043. [Google Scholar] [CrossRef]
- Waters, J.; Lea, D.J.; Martin, M.J.; Mirouze, I.; Weaver, A.; While, J. Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. R. Meteorol. Soc. 2015, 141, 333–349. [Google Scholar] [CrossRef]
- Stark, J.D.; Donlon, C.J.; Martin, M.J.; McCulloch, M.E. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. In Proceedings of the Oceans 07 IEEE Aberdeen, Conference Proceedings, Aberdeen, UK, 18–21 June 2007; pp. 1–4. [Google Scholar]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Lee, J.S.; Seo, Y.S.; Ko, W.J.; Yang, J.Y.; Hwang, J.D.; Kim, B.Y. A study on the technique of ARGO data delayed-mode quality control. In Annual Report of National Institute of Fisheries Science; National Institute of Fisheries Science (NIFS): Busan, Korea, 2010. [Google Scholar]
- Kim, K.H.; Cho, J. Development of a Gap Filling Technique for Statistical Downscaling of Climate Change Scenario Data. J. Clim. Chang. Res. 2019, 10, 333–341. [Google Scholar] [CrossRef]
- Min, Y.; Jeong, J.Y.; Jang, C.J.; Lee, J.; Jeong, J.; Min, I.K.; Shim, J.S.; Kim, Y.S. Quality Control of Observed Temperature Time Series from the Korea Ocean Research Stations: Preliminary Application of Ocean Observation Initiative’s Approach and Its Limitation. Ocean Polar Res. 2020, 42, 195–210. [Google Scholar]
- Sakov, P.; Sandery, P. An adaptive quality control procedure for data assimilation. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1318031. [Google Scholar] [CrossRef] [Green Version]
- Nardelli, B.B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- National Fisheries Research and Development Institute (NFRDI). Development of Retreatment Techniques for NOAA Sea Surface Temperature Imagery; National Fisheries Research and Development Institute (NFRDI): Quezon, Philippines, 2006.
- Sandery, P.A.; Sakov, P. Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale. Nat. Commun. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakada, S.; Hirose, N.; Senjyu, T.; Fukudome, K.I.; Tsuji, T.; Okei, N. Operational ocean prediction experiments for smart coastal fishing. Prog. Oceanogr. 2014, 121, 125–140. [Google Scholar] [CrossRef]
- Arango, H.G.; Levin, J.C.; Curchitser, E.N.; Zhang, B.; Moore, A.M.; Han, W.; Gordon, A.L.; Lee, C.M.; Girton, J.B. Development of a hindcast/forecast model for the Philippine Archipelago. Oceanography 2011, 24, 58–69. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Yu, X.; Shi, S.; Xu, L.; Liu, Y.; Miao, Q.; Sun, M. A novel method for sea surface temperature prediction based on deep learning. Math. Probl. Eng. 2020, 2020, 6387173. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Cornillon, P.C.; Reiman, D.M. Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes. Remote Sens. 2021, 13, 744. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 17, 740–744. [Google Scholar] [CrossRef]
- Manucharyan, G.E.; Siegelman, L.; Klein, P. A deep learning approach to spatiotemporal sea surface height interpolation and estimation of deep currents in geostrophic ocean turbulence. J. Adv. Modeling Earth Syst. 2021, 13, e2019MS001965. [Google Scholar] [CrossRef]
- Gou, Y.; Zhang, T.; Liu, J.; Wei, L.; Cui, J.H. DeepOcean: A general deep learning framework for spatio-temporal ocean sensing data prediction. IEEE Access 2020, 8, 79192–79202. [Google Scholar] [CrossRef]
- Bolton, T.; Zanna, L. Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Modeling Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Wang, Z.; Xie, P.; Han, N.; Jiang, J.; Xu, D. A novel dual path gated recurrent unit model for sea surface salinity prediction. J. Atmos. Ocean. Technol. 2020, 37, 317–325. [Google Scholar] [CrossRef]
- Ducournau, A.; Fablet, R. Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data. In Proceedings of the 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS), Cancun, Mexico, 4 December 2016; pp. 1–6. [Google Scholar]
- Zheng, G.; Li, X.; Zhang, R.H.; Liu, B. Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Sci. Adv. 2020, 6, eaba1482. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Park, K.A.; Chae, J.; Park, J.E.; Lee, J.S.; Lee, J.H. Red tide detection using deep learning and high-spatial resolution optical satellite imagery. Int. J. Remote Sens. 2020, 41, 5838–5860. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, Y.; Choi, J.Y. Restoration of Missing Patterns on Satellite Infrared Sea Surface Temperature Images Due to Cloud Coverage Using Deep Generative Inpainting Network. J. Mar. Sci. Eng. 2021, 9, 310. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. Topex/Poseidon tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Xingjian, S.H.I.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Processing Syst. 2015, 8, 802–810. [Google Scholar]
- Kim, J.H.; Eom, H.M.; Choi, J.K.; Lee, S.M.; Kim, Y.H.; Chang, P.H. Impacts of OSTIA sea surface temperature in regional ocean data assimilation system. Sea 2015, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
Name | CTRL | WGIN |
---|---|---|
Model | ROMS | |
Horizontal grid | 534(idx) × 535(idy) | |
Vertical layer | 15 sigma layers | |
Ocean boundary | Myocean (1/12° physics analysis forecast data) | |
Surface boundary | GFS 0.25° (NCEP) | |
Tide | OTPS with TPXO8.0 | |
Bathymetry | GBECO | |
Initial field | OI with OSTIA | OI with GIN-SST |
Forecast period | +6 day with hindcast (2 day) | +6 day |
Date | DEOKJEOKDO | INCHEON | OEYEONGDO | RMSE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Obs | GIN | OST | Obs | GIN | OST | Obs | GIN | OST | GIN | OST | |
02.13 | 1.0 | 1.3 | 0.5 | 1.8 | 1.5 | 2.5 | 3.1 | 2.6 | 3.7 | 0.34 | 0.40 |
05.13 | 9.9 | 9.9 | 10.7 | 10.8 | 10.5 | 11.1 | 11.5 | 11.2 | 11.8 | ||
08.13 | 23.8 | 23.8 | 23.5 | 27.5 | 27.8 | 27.1 | 30.1 | 29.8 | 29.5 | ||
11.13 | 15.6 | 16.3 | 15.6 | 14.5 | 14.9 | 14.6 | 14.9 | 15.5 | 15.1 | ||
Date | PYEONGTAEK | DAECHEON | GUNSAN-PORT | RMSE | |||||||
Obs | GIN | OST | Obs | GIN | OST | Obs | GIN | OST | GIN | OST | |
02.13 | 0.4 | 2.7 | 1.6 | 2.0 | 1.6 | 2.0 | 1.1 | 0.8 | 2.1 | 0.82 | 0.44 |
05.13 | 11.9 | 12.1 | 12.2 | 13.7 | 13.1 | 13.6 | 14.1 | 14.1 | 14.5 | ||
08.13 | 25.3 | 23.9 | 26.5 | 26.9 | 26.8 | 27.4 | 28.3 | 25.3 | 28.4 | ||
11.13 | 15.5 | 16.1 | 15.4 | 15.2 | 16.1 | 15.0 | 14.6 | 14.7 | 14.4 |
Date | CTRL | WGIN | DIFF CTRL−WGIN |
---|---|---|---|
13 February | |||
13 August |
Date | DEOKJEOKDO | INCHEON |
---|---|---|
13–18 February | ||
13–18 May | ||
13–18 August | ||
13–18 November |
Date | OEYEONDO | PYEONGTAEK |
---|---|---|
13–18 February | ||
13–18 May | ||
13–18 August | ||
13–18 November |
Date | DAECHEON | GUNSAN PORT |
---|---|---|
13–18 February | ||
13–18 May | ||
13–18 August | ||
13–18 November |
POINT | Open Ocean | Coastal Area | ||||
---|---|---|---|---|---|---|
DEOKJEOKDO | INCHEON | OEYEONGDO | PYEONGTAEK | DAECHEON | GUNSAN | |
WGIN | 2.34 | 1.58 | 1.11 | 1.57 | 0.65 | 1.09 |
TOTAL | 1.10 | 1.44 | ||||
CTRL | 1.3 | 1.28 | 0.86 | 2.17 | 1.42 | 0.72 |
TOTAL | 1.68 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Park, Y.; Hwang, J.; Jeong, K.; Kim, E. Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration. J. Mar. Sci. Eng. 2022, 10, 450. https://doi.org/10.3390/jmse10040450
Choi Y, Park Y, Hwang J, Jeong K, Kim E. Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration. Journal of Marine Science and Engineering. 2022; 10(4):450. https://doi.org/10.3390/jmse10040450
Chicago/Turabian StyleChoi, Youngjin, Youngmin Park, Jaedong Hwang, Kijune Jeong, and Euihyun Kim. 2022. "Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration" Journal of Marine Science and Engineering 10, no. 4: 450. https://doi.org/10.3390/jmse10040450
APA StyleChoi, Y., Park, Y., Hwang, J., Jeong, K., & Kim, E. (2022). Improving Ocean Forecasting Using Deep Learning and Numerical Model Integration. Journal of Marine Science and Engineering, 10(4), 450. https://doi.org/10.3390/jmse10040450