An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer
Abstract
:1. Introduction
2. Instrument and Datasets
2.1. Microwave Radiometer
2.2. Dataset
3. 1D-VAR Algorithm
4. Results
4.1. Case Study
4.2. Statistical Analysis
5. Summary and Conclusions
- The three methods have good agreement from 0 to 10 km, the RMSEs and MAEs of the NN inversion algorithm gradually become larger with the increase of height, the original 1D-Var method has larger deviation in the low level, the combined 1D-Var method improves the inversion accuracy of the 1D-Var method, and the inversion results do not increase with the increase of height;
- Compared to the MWR, the RMSE/MAE of the combined 1D-Var are reduced by 25%/29% under clear sky conditions and by 31%/48% under cloudy sky conditions, respectively;
- Compared to the MWR, the RMSE/MAE of the combined 1D-Var is reduced by 43%/42% during daytime; and by 19%/22% during night-time, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cimini, D.; Hewison, T.J.; Martin, L.; Güldner, J.; Gaffard, C.; Marzano, F.S. Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC. Meteorol. Z. 2006, 15, 45–56. [Google Scholar] [CrossRef]
- Le Pichon, A.; Assink, J.D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C.F.; Keckhut, P.; Hauchecorne, A.; Rüfenacht, R.; Kämpfer, N.; et al. Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J. Geophys. Res. Atmos. 2015, 120, 8318–8331. [Google Scholar] [CrossRef]
- Xu, G.; Xi, B.; Zhang, W.; Cui, C.; Dong, X.; Liu, Y.; Yan, G. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings. J. Geophys. Res. Atmos. 2015, 120, 10313–10323. [Google Scholar] [CrossRef]
- Westwater, E.R.; Crewell, S.; Mätzler, C. A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere. URSI Radio Sci. Bull. 2004, 2004, 59–80. [Google Scholar]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.; Huang, H.L.; Achtor, T. Global soundings of the atmosphere from atovs measurements: The algorithm and validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Tan, H.; Mao, J.; Chen, H.; Chan, P.W.; Wu, D.; Li, F.; Deng, T. A Study of a Retrieval Method for Temperature and Humidity Profiles from Microwave Radiometer Observations Based on Principal Component Analysis and Stepwise Regression. J. Atmos. Ocean. Technol. 2011, 28, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.L.; Posada, R.; García-Ortega, E.; López, L.; Marcos, J.L. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer. Atmos. Res. 2013, 122, 43–54. [Google Scholar] [CrossRef]
- Renju, R.; Suresh Raju, C.; Mathew, N.; Antony, T.; Krishna Moorthy, K. Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station. J. Geophys. Res. Atmos. 2015, 120, 4585–4599. [Google Scholar] [CrossRef]
- Cadeddu, M.P.; Liljegren, J.C.; Turner, D.D. The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. 2013, 6, 2359–2372. [Google Scholar] [CrossRef] [Green Version]
- Decker, M.T.; Westwater, E.R.; Guiraud, F.O. Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles. J. Appl. Meteorol. 1978, 17, 1788–1795. [Google Scholar] [CrossRef] [Green Version]
- Guiraud, F.O.; Howard, J.; Hogg, D.C. A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid. IEEE Trans. Geosci. Electron. 1979, 17, 129–136. [Google Scholar] [CrossRef]
- Basili, P.; Ciotti, P.; Solimini, D. Inversion of ground-based radiometric data by kalman filtering. Radio Sci. 1981, 16, 83–91. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Solheim, F.; Godwin, J.R.; Westwater, E.R.; Han, Y.; Keihm, S.J.; Marsh, K.; Ware, R. Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci. 1998, 33, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Maitra, A. Retrieval of atmospheric properties with radiometric measurements using neural network. Atmos. Res. 2016, 181, 124–132. [Google Scholar] [CrossRef]
- Westwater, E.R.; Stankov, B.B.; Cimini, D.; Han, Y.; Shaw, J.A.; Lesht, B.M.; Long, C.N. Radiosonde humidity soundings and microwave radiometers during nauru99. J. Atmos. Ocean. Technol. 2003, 20, 953–971. [Google Scholar] [CrossRef]
- Löhnert, U.; Crewell, S.; Simmer, C. An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water. J. Appl. Meteorol. 2004, 43, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Löhnert, U.; Crewell, S.; Krasnov, O.; O’Connor, E.; Russchenberg, H. Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. J. Atmos. Ocean. Technol. 2008, 25, 1251–1266. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding (Theory and Practice), 2nd ed.; World Scientific: Singapore, 2000; p. 238. [Google Scholar]
- Hewison, T.J. 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 2163–2168. [Google Scholar] [CrossRef]
- Cimini, D.; Westwater, E.R.; Gasiewski, A.J. Temperature and Humidity Profiling in the Arctic Using Ground-Based Millimeter-Wave Radiometry and 1DVAR. IEEE Trans. Geosci. Remote. Sens. 2010, 48, 1381–1388. [Google Scholar] [CrossRef]
- Martinet, P.; Dabas, A.; Donier, J.M.; Douffet, T.; Garrouste, O.; Guillot, R. 1D-Var temperature retrievals from microwave radiometer and convective scale model. Tellus 2015, 67, 27925. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Min, Q. Retrieval of Atmospheric Profiles in the New York State Mesonet Using One-Dimensional Variational Algorithm. J. Geophys. Res. Atmos. 2018, 123, 7563–7575. [Google Scholar] [CrossRef]
- Ware, R.; Carpenter, R.; Gueldner, J.; Liljegren, J.; Nehrkorn, T.; Solheim, F.; Vandenberghe, F. A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Sci. 2003, 38, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E. Ncep/ncar 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the aer codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Araki, K.; Murakami, M.; Ishimoto, H.; Tajiri, T. Ground-based microwave radiometer variational analysis during no-rain and rain conditions. Sola 2015, 11, 108–112. [Google Scholar] [CrossRef] [Green Version]
Height (m) | MWR | 1D-Var | 1D-Var-Combine | |||
---|---|---|---|---|---|---|
p Value | CI | p Value | CI | p Value | CI | |
0 | 0.0744 | 1.9136 | 0.2676 | 1.7630 | 0.1087 | 1.6947 |
500 | 0.0899 | 2.6657 | 0.3121 | 2.6613 | 0.0613 | 2.3533 |
2500 | 1.75 × 10−6 | 1.4832 | 0.0229 | 3.0226 | 0.1957 | 1.6119 |
5000 | 2.38 × 10−8 | 1.7465 | 0.1591 | 2.9983 | 2.06 × 10−4 | 1.7368 |
7500 | 2.86 × 10−8 | 2.2793 | 0.0215 | 3.3257 | 8.49 × 10−4 | 2.6808 |
Height (m) | MWR | 1D-Var | 1D-Var-Combine | |||
---|---|---|---|---|---|---|
p Value | CI | p Value | CI | p Value | CI | |
0 | 6.59 × 10−4 | 1.2942 | 0.0562 | 1.0712 | 0.0654 | 1.5404 |
500 | 0.0447 | 1.2313 | 3.96 × 10−5 | 1.2172 | 1.14 × 10−4 | 1.4198 |
2500 | 7.56 × 10−11 | 0.9090 | 3.49 × 10−8 | 2.1616 | 0.6477 | 1.0507 |
5000 | 4.92 × 10−22 | 1.0528 | 0.9644 | 2.2131 | 7.59 × 10−5 | 1.2348 |
7500 | 1.02 × 10−20 | 1.4127 | 0.3067 | 2.5917 | 3.28 × 10−4 | 1.6637 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Zhao, Y.; Chen, S. An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer. J. Mar. Sci. Eng. 2022, 10, 641. https://doi.org/10.3390/jmse10050641
Yan H, Zhao Y, Chen S. An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer. Journal of Marine Science and Engineering. 2022; 10(5):641. https://doi.org/10.3390/jmse10050641
Chicago/Turabian StyleYan, Hualong, Yuxin Zhao, and Songbo Chen. 2022. "An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer" Journal of Marine Science and Engineering 10, no. 5: 641. https://doi.org/10.3390/jmse10050641
APA StyleYan, H., Zhao, Y., & Chen, S. (2022). An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer. Journal of Marine Science and Engineering, 10(5), 641. https://doi.org/10.3390/jmse10050641