Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Mucus Extraction
2.3. Isolation and Enumeration of Bacteria
2.4. Morphological and Biochemical Characterization
2.5. Molecular Identification
2.6. Antimicrobial Activity Assay
2.7. Statistical Analyses
3. Results
3.1. Coral Mucus and Seawater Viable Bacterial Count
3.2. Biochemical Identification of Bacteria
3.3. Molecular Identification of Bacteria and Phylogenetic Analysis
3.4. Distribution of Shared and Non-Ubiquitous Bacterial Isolates
3.5. Distribution of Coral Mucus and Seawater Bacterial Communities
3.6. Antimicrobial Activity of Coral Mucus and Seawater Bacterial Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; van Oevelen, D. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci. Rep. 2016, 6, 18715. [Google Scholar] [CrossRef] [PubMed]
- Frias-Lopez, J.; Klaus, J.S.; Bonheyo, G.T.; Fouke, B.W. Bacterial community associated with black band disease in corals. Appl. Environ. Microbiol. 2004, 70, 5955–5962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.; Maidens, J. Reefs at Risk in the Caribbean; World Resources Institute: Washington, DC, USA, 2004. [Google Scholar]
- Rohwer, F.; Seguritan, V.; Azam, F. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 2002, 243, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bourne, D.G.; Munn, C.B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 2005, 7, 1162–1174. [Google Scholar] [CrossRef]
- Bourne, D.G.; Morrow, K.M.; Webster, N.S. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu. Rev. Microbiol. 2016, 70, 317–340. [Google Scholar] [CrossRef]
- Peixoto, R.S.; Rosado, P.M.; Leite, D.C.D.A.; Rosado, A.; Bourne, D.G. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front. Microbiol. 2017, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Kimes, N.E.; Van Nostrand, J.D.; Weil, E.; Zhou, J.; Morris, P.J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 2010, 12, 541–556. [Google Scholar] [CrossRef]
- Raina, J.-B.; Tapiolas, D.; Willis, B.L.; Bourne, D.G. Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Appl. Environ. Microbiol. 2009, 75, 3492–3501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ling, J.; Yang, Q.; Wen, C.; Yan, Q.; Sun, H.; Van Nostrand, J.D.; Shi, Z.; Zhou, J.; Dong, J. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 2015, 5, 16191. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, K. No TiRegulation of microbial populations by coral surface mucus and mucus-associated bacteriatle. Mar. Ecol. Prog. Ser. 2006, 322, 1–14. [Google Scholar] [CrossRef]
- Welsh, R.M.; Zaneveld, J.R.; Rosales, S.M.; Payet, J.P.; Burkepile, D.E.; Thurber, R.V. Bacterial predation in a marine host-associated microbiome. ISME J. 2016, 10, 1540–1544. [Google Scholar] [CrossRef]
- Jessen, C.; Villa Lizcano, J.F.; Bayer, T.; Roder, C.; Aranda, M.; Wild, C.; Voolstra, C.R. In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE 2013, 8, e62091. [Google Scholar] [CrossRef]
- Bruno, J.F.; Petes, L.E.; Drew Harvell, C.; Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 2003, 6, 1056–1061. [Google Scholar] [CrossRef]
- Vega Thurber, R.L.; Burkepile, D.E.; Fuchs, C.; Shantz, A.A.; McMinds, R.; Zaneveld, J.R. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol. 2014, 20, 544–554. [Google Scholar] [CrossRef]
- Smith, J.E.; Shaw, M.; Edwards, R.A.; Obura, D.; Pantos, O.; Sala, E.; Sandin, S.A.; Smriga, S.; Hatay, M.; Rohwer, F.L. Indirect effects of algae on coral: Algae-mediated, microbe-induced coral mortality. Ecol. Lett. 2006, 9, 835–845. [Google Scholar] [CrossRef]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef]
- Lamb, J.B.; Williamson, D.H.; Russ, G.R.; Willis, B.L. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology 2015, 96, 2555–2567. [Google Scholar] [CrossRef]
- Wear, S.L.; Thurber, R.V. Sewage pollution: Mitigation is key for coral reef stewardship. Ann. N. Y. Acad. Sci. 2015, 1355, 15–30. [Google Scholar] [CrossRef]
- Paulino, G.V.B.; Broetto, L.; Pylro, V.S.; Landell, M.F. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects. Mar. Pollut. Bull. 2017, 114, 1024–1030. [Google Scholar] [CrossRef]
- Shore, A.; Day, R.D.; Stewart, J.A.; Burge, C.A. Dichotomy between Regulation of Coral Bacterial Communities and Calcification Physiology under Ocean Acidification Conditions. Appl. Environ. Microbiol. 2022, 87, e02189-20. [Google Scholar] [CrossRef]
- McDevitt-Irwin, J.M.; Baum, J.K.; Garren, M.; Vega Thurber, R.L. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors. Front. Mar. Sci. 2017, 4, 262. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.; Jensen, P.R.; Fenical, W. Chemical Ecology of Marine Microbial Defense. J. Chem. Ecol. 2002, 28, 1971–1985. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.E. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 2005, 296, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Raina, J.-B.; Tapiolas, D.; Motti, C.A.; Foret, S.; Seemann, T.; Tebben, J.; Willis, B.L.; Bourne, D.G. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016, 4, e2275. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Ortega, J.; Thomé, P.E. Contrasting Antibacterial Capabilities of the Surface Mucus Layer From Three Symbiotic Cnidarians. Front. Mar. Sci. 2018, 5, 392. [Google Scholar] [CrossRef]
- Castillo, I.; Lodeiros, C.; Núñez, M.; Campos, I. In vitro evaluation of antibacterial substances produced by bacteria isolated from different marine organisms. Rev. Biol. Trop. 2001, 49, 1213–1222. [Google Scholar]
- Nithyanand, P.; Pandian, S.K. Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol. Ecol. 2009, 69, 384–394. [Google Scholar] [CrossRef]
- Al-Horani, F.A.; Al-Rousan, S.A.; Al-Zibdeh, M.; Khalaf, M.A. The status of coral reefs on the Jordanian coast of the Gulf of Aqaba, Red Sea. Zool. Middle East 2006, 38, 99–110. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Rashdan, M.; Nazzal, Y.; Howari, F.; Iqbal, J.; Al-Rawabdeh, A.; Al Bsoul, A.; Khashashneh, S. Evaluation of the Gulf of Aqaba Coastal Water, Jordan. Water 2020, 12, 2125. [Google Scholar] [CrossRef]
- Wahsha, M.; Juhmani, A.-S.; Buosi, A.; Sfriso, A.; Sfriso, A. Assess the environmental health status of macrophyte ecosystems using an oxidative stress biomarker. Case studies: The Gulf of Aqaba and the Lagoon of Venice. Energy Procedia 2017, 125, 19–26. [Google Scholar] [CrossRef]
- Al-Halasah, N.; Ammary, B.Y. Potential Risk And Control of Contamination in The Gulf of Aqaba-Jordan BT—Managing Critical Infrastructure Risks; Linkov, I., Wenning, R.J., Kiker, G.A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 435–444. [Google Scholar]
- Koren, O.; Rosenberg, E. Bacteria associated with the bleached and cave coral Oculina patagonica. Microb. Ecol. 2008, 55, 523–529. [Google Scholar] [CrossRef]
- Omry, K.; Eugene, R. Bacteria Associated with Mucus and Tissues of the Coral Oculina patagonica in Summer and Winter. Appl. Environ. Microbiol. 2006, 72, 5254–5259. [Google Scholar] [CrossRef] [Green Version]
- Lampert, Y.; Kelman, D.; Dubinsky, Z.; Nitzan, Y.; Hill, R.T. Diversity of culturable bacteria in the mucus of the Red Sea coral Fungia scutaria. FEMS Microbiol. Ecol. 2006, 58, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Stanley, J.T.; William, S.T. Bergey’s Manual of Determinative Bacteriology; Williams and Wilikins, Ed.; Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Garrity, G.M.; Brenner, J.G.; Krieg, N.R.; Staley, J.R.; Manual, B.S. The road map to the manual. In Bergey’s Manual of Systemic Bacteriology, 2nd ed.; Garrity, G.M., Ed.; Springer: New York, NY, USA, 2001; pp. 119–166. [Google Scholar]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, A.A. Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24, 1757–1764. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Heindl, H.; Wiese, J.; Thiel, V.; Imhoff, J.F. Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst. Appl. Microbiol. 2010, 33, 94–104. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Oliveros, J.C.; (2007–2015) Venny. An interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 5 May 2022).
- Clarke, K.R.; Gorley, R.N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research); PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Al-Karablieh, N.; Al-Horani, F.A.; Alnaimat, S.; Abu Zarga, M.H. Prevalence of Vibrio coralliilyticus in stony coral Porites sp. in the Gulf of Aqaba, Jordan. Lett. Appl. Microbiol. 2022. [Google Scholar] [CrossRef]
- Hussien, E.; Juhmani, A.-S.; AlMasri, R.; Al-Horani, F.; Al-Saghir, M. Metagenomic analysis of microbial community associated with coral mucus from the Gulf of Aqaba. Heliyon 2019, 5, e02876. [Google Scholar] [CrossRef]
- Ziegler, M.; Grupstra, C.G.B.; Barreto, M.M.; Eaton, M.; BaOmar, J.; Zubier, K.; Al-Sofyani, A.; Turki, A.J.; Ormond, R.; Voolstra, C.R. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 2019, 10, 3092. [Google Scholar] [CrossRef] [Green Version]
- Jaber, F. Identification and Characterization and Seasonality of Bacterial Communities Associated with Coral Reef in the Gulf of Aqaba—Jordan; Yarmouk University: Irbid, Jordan, 2012. [Google Scholar]
- Klaus, J.S.; Janse, I.; Heikoop, J.M.; Sanford, R.A.; Fouke, B.W. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ. Microbiol. 2007, 9, 1291–1305. [Google Scholar] [CrossRef]
- Roik, A.; Röthig, T.; Roder, C.; Ziegler, M.; Kremb, S.G.; Voolstra, C.R. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS ONE 2016, 11, e0163939. [Google Scholar] [CrossRef]
- Pereira, L.B.; Palermo, B.R.Z.; Carlos, C.; Ottoboni, L.M.M. Diversity and antimicrobial activity of bacteria isolated from different Brazilian coral species. FEMS Microbiol. Lett. 2017, 364, fnx164. [Google Scholar] [CrossRef] [Green Version]
- Rypien, K.L.; Ward, J.R.; Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 2010, 12, 28–39. [Google Scholar] [CrossRef]
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16, S129–S138. [Google Scholar] [CrossRef]
- Kooperman, N.; Ben-Dov, E.; Kramarsky-Winter, E.; Barak, Z.; Kushmaro, A. Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol. Lett. 2007, 276, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Frias-Lopez, J.; Zerkle, A.; Bonheyo, G.; Fouke, B.W. Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces. Appl. Environ. Microbiol. 2002, 68, 2214–2228. [Google Scholar] [CrossRef] [Green Version]
- Madeswaran, P. Seasonal and spatial distribution of heterotrophic bacteria in relation to physico-chemical properties along Ennore coastal waters. Indian J. Mar. Geo Sci. 2018, 47, 587–597. [Google Scholar]
- Michalska, M.; Zorena, K.; Marks, R.; Wąż, P. The emergency discharge of sewage to the Bay of Gdańsk as a source of bacterial enrichment in coastal air. Sci. Rep. 2021, 11, 20959. [Google Scholar] [CrossRef]
- Labuzek, S.; Hupert-Kocurek, K.T.; Skurnik, M. Isolation and characterisation of new Planococcus sp. strain able for aromatic hydrocarbons degradation. Acta Microbiol. Pol. 2003, 52, 395–404. [Google Scholar] [PubMed]
- Thompson, F.L.; Thompson, C.C.; Naser, S.; Hoste, B.; Vandemeulebroecke, K.; Munn, C.; Bourne, D.; Swings, J. Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int. J. Syst. Evol. Microbiol. 2005, 55, 913–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajasabapathy, R.; Ramasamy, K.P.; Manikandan, B.; Mohandass, C.; Arthur James, R. Bacterial Communities Associated With Healthy and Diseased (Skeletal Growth Anomaly) Reef Coral Acropora cytherea From Palk Bay, India. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Parrilli, E.; Papa, R.; Tutino, M.L.; Sannia, G. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioeng. Bugs 2010, 1, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Littman, R.A.; Willis, B.L.; Pfeffer, C.; Bourne, D.G. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol. Ecol. 2009, 68, 152–163. [Google Scholar] [CrossRef]
- Hadaidi, G.; Röthig, T.; Yum, L.K.; Ziegler, M.; Arif, C.; Roder, C.; Burt, J.; Voolstra, C.R. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci. Rep. 2017, 7, 45362. [Google Scholar] [CrossRef] [Green Version]
- Lalucat, J.; Bennasar, A.; Bosch, R.; García-Valdés, E.; Palleroni, N.J. Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 2006, 70, 510–547. [Google Scholar] [CrossRef] [Green Version]
- Yael, B.-H.; Maya, Z.-K.; Eugene, R. Temperature-Regulated Bleaching and Lysis of the Coral Pocillopora damicornis by the Novel Pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 2003, 69, 4236–4242. [Google Scholar] [CrossRef] [Green Version]
- Garren, M.; Son, K.; Tout, J.; Seymour, J.R.; Stocker, R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 2016, 10, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Muller, E.M.; Rogers, C.S.; Spitzack, A.S.; van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 2008, 27, 191–195. [Google Scholar] [CrossRef]
- Arboleda, M.; Reichardt, W. Epizoic communities of prokaryotes on healthy and diseased scleractinian corals in Lingayen Gulf, Philippines. Microb. Ecol. 2009, 57, 117–128. [Google Scholar] [CrossRef]
- Bayer, T.; Neave, M.J.; Alsheikh-Hussain, A.; Aranda, M.; Yum, L.K.; Mincer, T.; Hughen, K.; Apprill, A.; Voolstra, C.R. The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria. Appl. Environ. Microbiol. 2013, 79, 4759–4762. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-H.; Tseng, C.-H.; Huang, C.-R.; Chen, C.-P.; Tandon, K.; Lee, S.T.M.; Chiang, P.-W.; Shiu, J.-H.; Chen, C.A.; Tang, S.-L. Long-Term Survey Is Necessary to Reveal Various Shifts of Microbial Composition in Corals. Front. Microbiol. 2017, 8, 1094. [Google Scholar] [CrossRef]
- Hong, M.-J.; Yu, Y.-T.; Chen, C.A.; Chiang, P.-W.; Tang, S.-L. Influence of Species Specificity and Other Factors on Bacteria Associated with the Coral Stylophora pistillata in Taiwan. Appl. Environ. Microbiol. 2009, 75, 7797–7806. [Google Scholar] [CrossRef] [Green Version]
- Osman, E.O.; Suggett, D.J.; Voolstra, C.R.; Pettay, D.T.; Clark, D.R.; Pogoreutz, C.; Sampayo, E.M.; Warner, M.E.; Smith, D.J. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 2020, 8, 8. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, R.; Shan, D.; Shao, Z. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl. Microbiol. Biotechnol. 2014, 98, 7253–7269. [Google Scholar] [CrossRef]
- Rajeev, M.; Sushmitha, T.J.; Aravindraja, C.; Toleti, S.R.; Pandian, S.K. Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem. Sci. Rep. 2021, 11, 17341. [Google Scholar] [CrossRef]
- Maher, M.; Palmer, R.; Gannon, F.; Smith, T. Relationship of a Novel Bacterial Fish Pathogen to Streptobacillus moniliformis and the Fusobacteria Group, based on 16S Ribosomal RNA Analysis. Syst. Appl. Microbiol. 1995, 18, 79–84. [Google Scholar] [CrossRef]
- Nissimov, J.; Rosenberg, E.; Munn, C.B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 2009, 292, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Renzi, J.; Shaver, E.; Burkepile, D.; Silliman, B. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc. Natl. Acad. Sci. USA 2002, 99, 8725–8730. [Google Scholar] [CrossRef] [Green Version]
- Krediet, C.J.; Ritchie, K.B.; Cohen, M.; Lipp, E.K.; Sutherland, K.P.; Teplitski, M. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl. Environ. Microbiol. 2009, 75, 3851–3858. [Google Scholar] [CrossRef] [Green Version]
- Krediet, C.J.; Ritchie, K.B.; Paul, V.J.; Teplitski, M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. Biol. Sci. 2013, 280, 20122328. [Google Scholar] [CrossRef] [Green Version]
- Al-Absi, E.; Manasrah, R.; Wahsha, M.; Al-Makahleh, M. Radionuclides levels in marine sediment and seagrass in the northern Gulf of Aqaba, Red Sea. Fresenius Environ. Bull. 2016, 25, 3461–3474. [Google Scholar]
- Al-Zibdah, M.; Damhoureyeh, S. Spatial and Temporal Distribution of Macroalgae Along the Jordanian Coast of the Gulf of Aqaba, Red Sea. Dirasat 2006, 33, 35–47. [Google Scholar]
- Al-Rousan, S.; Al-Shloul, R.; Al-Horani, F.; Abu-Hilal, A. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba. Mar. Pollut. Bull. 2007, 54, 1912–1922. [Google Scholar] [CrossRef] [PubMed]
Sample | Site | Closest Match in GenBank | % Identity | Accession Number | |
---|---|---|---|---|---|
P. damicornis | APm25 | I.Z | Pseudoalteromonas sp. strain 70410 | 97.8 | KX833144.1 |
APm32 | Pseudoalteromonas sp. strain 70367 | 97.7 | KX889955.1 | ||
BPm9 | P. Beach | Psychrobacter celer strain Mcap_H2 | 98.6 | KP640590.1 | |
BPm21 | Pseudoalteromonas sp. strain 70607 | 96.9 | KY272021.1 | ||
CPm6 | P. Berth | Psychrobacter celer strain 32 | 97.2 | FJ613610.1 | |
CPm13 | Pseudoalteromonas sp. strain 70004 | 98.0 | MF061257.1 | ||
CPm48 | Cellulophaga lytica strain IMCC34136 | 96.7 | MG456766.1 | ||
S. pistillata | ASm14 | I.Z | Pseudoalteromonas sp. strain NBTE-X3 | 97.7 | MW709811.1 |
ASm17 | Vibrio sp. strain 201705CJKOP-47 | 96.8 | MG309360.1 | ||
BSm20 | P. Beach | Vibrio sp. Mj76 | 96.0 | GQ455012.1 | |
BSm24 | Vibrio halioticoli strain Msp2-1 | 97.9 | MK334316.1 | ||
BSm36 | Bacillus sp. MML3 | 99.0 | JX847617.1 | ||
CSm16 | P. Berth | Agarivorans sp. VibC-Oc-065 | 98.0 | KF577091.1 | |
CSm18 | Psychrobacter celer strain 32 | 97.1 | FJ613610.1 | ||
CSm34 | Psychrobacter sp. strain 201705CJKOP-104 | 96.0 | MG309417.1 | ||
CSm37 | Shewanella fidelis strain 3313 | 98.0 | KY696838.1 | ||
CSm38 | Shewanella sp. strain MH6 | 97.6 | MN049712.1 |
Sample | Site | Closest Match in GenBank | % Identity | Accession Number | |
---|---|---|---|---|---|
P. damicornis | APw2 | I.Z | Marinomonas aquiplantarum strain IVIA-Po-183 | 96.0 | EU188446.1 |
APw5 | Bacillus thuringiensis isolate PG05 | 98.0 | EU161995.1 | ||
BPw9 | P. Beach | Acinetobacter schindleri strain LUH5832 | 95.7 | MG581287.1 | |
CPw2 | P. Berth | Psychrobacter marincola strain MTa2-2-1 | 98.4 | MW675164.1 | |
CPw5 | Bacillus cereus isolate PGO6 | 97.9 | EU161996.1 | ||
CPw8 | Bacillus firmus strain C21 | 96.1 | MT457439.1 | ||
CPw4 | Halomonas venusta strain 0099 | 98.3 | KP236234.1 | ||
S. pistillata | ASw1 | I.Z | Bacillus cereus strain CC2H2P | 97.9 | KX424371.1 |
ASw8 | Bacillus oceanisediminis strain SH-63 | 97.5 | KX959969.1 | ||
BSw5 | P. Beach | Halomonas venusta strain 0099 | 98.3 | KP236234.1 | |
BSw2 | Marinovum algicola strain ROA150 | 98.4 | MW965560.1 | ||
BSw9 | Vibrio chagasii strain 3-7 | 97.8 | MN938232.1 | ||
BSw11 | Shewanella fidelis strain S841 | 97.0 | MK452729.1 | ||
CSw8 | P.Berth | Bacillus horikoshii strain M2-1 | 97.7 | KF358263.1 |
Mucus | Seawater | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ASm14 | BPm21 | BSm24 | BSm36 | CSm16 | APw2 | ASw8 | BPw9 | CPw3 | CPw4 | |
S. marcescens | 7.4 (1.3) * | 8.0 (1.1) | - | 6.2 (1.4) | 16.2 (2.2) * | 9.1 (1.5) | - | 19.4 (1.6) | - | - |
P. aurgenosa | - | - | 24.1 (3.2) | - | 23.4 (2.1) * | - | - | 25.0 (3.6) | - | - |
S. aureus | 9.3 (1.2) * | - | - | - | - | - | 15.0 (2.2) | 20.2 (2.3) | 20.6 (2.1) | - |
M. luteus | - | - | - | - | - | - | - | - | - | 17.4 (2.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, E.I.; Juhmani, A.-S.F.; Jacob, J.H.; Telfah, M.A.; Abd Al-razaq, M.A.; Al-Horani, F.A.; Al Zoubi, M.S.; Malkawi, H.I. Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities. J. Mar. Sci. Eng. 2022, 10, 863. https://doi.org/10.3390/jmse10070863
Hussein EI, Juhmani A-SF, Jacob JH, Telfah MA, Abd Al-razaq MA, Al-Horani FA, Al Zoubi MS, Malkawi HI. Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities. Journal of Marine Science and Engineering. 2022; 10(7):863. https://doi.org/10.3390/jmse10070863
Chicago/Turabian StyleHussein, Emad I., Abdul-Salam F. Juhmani, Jacob H. Jacob, Mahmoud A. Telfah, Mutaz A. Abd Al-razaq, Fuad A. Al-Horani, Mazhar Salim Al Zoubi, and Hanan I. Malkawi. 2022. "Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities" Journal of Marine Science and Engineering 10, no. 7: 863. https://doi.org/10.3390/jmse10070863
APA StyleHussein, E. I., Juhmani, A. -S. F., Jacob, J. H., Telfah, M. A., Abd Al-razaq, M. A., Al-Horani, F. A., Al Zoubi, M. S., & Malkawi, H. I. (2022). Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities. Journal of Marine Science and Engineering, 10(7), 863. https://doi.org/10.3390/jmse10070863