The Influence of Ecological Factors on the Contents of Nutritional Components and Minerals in Laver Based on Open Sea Culture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sampling and Detection of Ecological Factors
2.2. Laver Sampling
2.3. Determination of Nutrient Components in Laver
2.4. Determination of Mineral Elements in Laver
2.5. Statistics
3. Results
3.1. Water Temperature, Salinity, Transparency, and pH in Taoluo and Muping Laver Farm
3.2. The Dissolved Inorganic Nitrogen (DIN) and Phosphorus (DIP) in Taoluo and Muping Laver Farm
3.3. The Content of the Nutrient Composition in the Varying Laver Species/Strains That Were Cultured in Taoluo and Muping
3.4. The Content of the Minerals in the Varying Laver Species/Strains That Were Cultured in Taoluo and Muping
3.5. Coefficient of Variation of the Nutritional Components in Different N. yezoensis Strains
3.6. Principal Component Analysis (PCA) of Different N. yezoensis Strains
3.7. Gray Correlation Analysis (GCA)
4. Discussion
4.1. Characteristics of Nutritional Components in N. yezoensis and N. haitanensis
4.2. Comparison of Different N. yezoensis Strains
4.3. The Influence of Ecological Factors on the Contents of Nutritional Components in Laver
4.3.1. The Influence of DIN and DIP on the Contents of Nutritional Components in Laver
4.3.2. The Influence of Temperature, Light, and Salinity on the Contents of Nutritional Components in Laver
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Ethics Statement
References
- Merrill, J.E. Development of nori markets in the western world. J. Appl. Phycol. 1993, 5, 149–154. [Google Scholar] [CrossRef]
- Chopin, T.; Yarish, C.; Wilkes, R.; Belyea, E.; Lu, S.; Mathieson, A. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 1999, 11, 463–472. [Google Scholar] [CrossRef]
- Carmona, R.; Kraemer, G.P.; Yarish, C. Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish-algal aquaculture system. Aquaculture 2006, 252, 54–65. [Google Scholar] [CrossRef]
- Pereira, R.; Yarish, C. The role of Porphyra in sustainable culture systems: Physiology and applications. In Seaweeds and Their Role in Globally Changing Environments; Seckbach, J., Einav, R., Israel, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 339–354. [Google Scholar]
- Blouin, N.A.; Brodie, J.A.; Grossman, A.C.; Xu, P.; Brawley, S.H. Porphyra: A marine crop shaped by stress. Trends Plant Sci. 2011, 16, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Sun, X.T.; Liu, F.L.; Liang, Z.R.; Zhang, J.H.; Wang, F.J. Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). J. Appl. Phycol. 2016, 28, 469–479. [Google Scholar] [CrossRef]
- Niwa, K.; Furuita, H.; Yamamoto, T. Changes of growth characteristics and free amino acid content of cultivated Porphyra yezoensis Ueda (Bangiales Rhodophyta) blades with the progression of the number of harvests in a nori farm. J. Appl. Phycol. 2008, 20, 687–693. [Google Scholar] [CrossRef]
- Green, L.A.; Neefus, C.D. Effects of temperature, light level, photoperiod, and ammonium concentration on Pyropia leucosticta (Bangiales, Rhodophyta) from the Northwest Atlantic. J. Appl. Phycol. 2015, 27, 1253–1261. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Wang, W.J.; Sun, X.T.; Liu, F.L.; Liang, Z.R.; Wang, F.J.; Chen, W.Z. Developmental and physiological properties of Porphyra dentata (Bangiales, Rhodophyta) conchocelis in culture. J. Appl. Phycol. 2016, 28, 3435–3445. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, W.J.; Liu, F.L.; Liang, Z.R.; Sun, X.T.; Yao, H.Q.; Wang, F.J. Periodical drying or no drying during aquaculture affects the desiccation tolerance of a sublittoral Pyropia yezoensis strain. J. Appl. Phycol. 2018, 30, 697–705. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, W.J.; Liu, F.L.; Liang, Z.R.; Sun, X.T.; Sun, T.Q.; Wang, F.J. AFLP fingerprints of Pyropia yezoensis populations revealed the important effect of farming protocols on genetic variation. Bot. Mar. 2018, 61, 141–147. [Google Scholar] [CrossRef]
- Hwang, E.S.; Ki, K.N.; Chung, H.Y. Proximate composition, amino acid, mineral, and heavy metal content of dried laver. Prev. Nutr. Food Sci. 2013, 18, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, D.; Xie, C.; Shi, X.; Xu, Y.; Zhang, Y. Analysis of the major quality traits in wild Porphyra haitanensis of Fujian coast. J. Jimei Univ. (Nat. Sci.) 2011, 16, 401–406, (In Chinese with English Abstract). [Google Scholar]
- Li, S. Analysis of nutrient composition and heavy metal content of Porphyra haitanensis in different sea areas of Fujian Province. J. Fish. Res. 2020, 42, 453–462, (In Chinese with English Abstract). [Google Scholar]
- Ji, M.; Pu, S.; Niu, Z. Variation in contents of different states of amino acids in Porphyra yezoensis Ueda cultured in different regions. Oceanol. Limnol. Sin. 1981, 12, 522–530, (In Chinese with English Abstract). [Google Scholar]
- Varela-Álvarez, E.; Tobin, P.R.; Guihéneuf, F.; FitzGerald, R.J.; Stengel, D.B. Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable. J. Appl. Phycol. 2019, 31, 3849–3860. [Google Scholar] [CrossRef]
- Wang, W.J.; Li, X.L.; Sun, T.Q.; Liang, Z.R.; Liu, F.L.; Sun, X.T.; Wang, F.J. Effects of periodical drying and non-drying on nutrient content and desiccation tolerance of an intertidal Pyropia yezoensis strain subject to farming conditions. J. Appl. Phycol. 2019, 31, 1897–1906. [Google Scholar] [CrossRef]
- Amano, H.; Noda, H. Effect of nitrogenous fertilizers on the recovery of discoloured fronds of Porphyra yezoensis. Bot. Mar. 1987, 30, 467–473. [Google Scholar] [CrossRef]
- Hafting, J.T. Effect of tissue nitrogen and phosphorus quota on growth of Porphyra yezoensis blades in suspension cultures. Hydrobiologia 1999, 398–399, 305–314. [Google Scholar] [CrossRef]
- Conitz, J.M.; Fagen, R.; Lindstrom, S.C.; Plumley, F.G.; Stekoll, M.S. Growth and pigmentation of juvenile Porphyra torta (Rhodophyta) gametophytes in response to nitrate, salinity and inorganic carbon. J. Appl. Phycol. 2001, 13, 423–431. [Google Scholar] [CrossRef]
- Korbee, N.; Huovinen, P.; Figueroa, F.L.; Aguilera, J.; Karsten, U. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 2005, 146, 645–654. [Google Scholar] [CrossRef]
- Li, X.; Fu, G.; Chen, B.; Xu, J.; He, P. Effects of nitrogen and phosphorus enrichment on growth and biochemical composition of laver Porphyra yezoensis. Fish. Sci. 2012, 31, 544–548, (In Chinese with English Abstract). [Google Scholar]
- Zeng, F.; Jiang, L.; Xu, X.; Zhang, W.; Lin, Y. Amino acid compositions and nutritive value of Porphyra yezoensis and Porphyra haitanensis from China. Oceanol. Limnol. Sina 1991, 22, 90–93, (In Chinese with English Abstract). [Google Scholar]
- Zhao, L.; Cao, R.; Wang, L.Z.; Liu, Q.; Chen, S.F.; Fu, P.F. Nutritional analysis and umami assessment of Pyropia yezoensis from Jing Bay. Prog. Fish. Sci. 2018, 39, 134–140, (In Chinese with English Abstract). [Google Scholar]
- GB 5009.4–2016; National Health Commission of the People’s Republic of China. National Food Safety Standard: Determination of Ash in Food. China Standards Press: Beijing, China, 2016.
- GB 5009.5–2016; National Health Commission of the People’s Republic of China, State Food and Drug Administration. National Food Safety Standard: Determination of Protein in Food. China Standards Press: Beijing, China, 2016.
- GB 5009.6–2016; National Health Commission of the People’s Republic of China, State Food and Drug Administration. National Food Safety Standard: Determination of Fat in Food. China Standards Press: Beijing, China, 2016.
- Saravana, P.S.; Chun, B.S. Seaweed polysaccharide isolation using subcritical water hydrolysis. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications; Venkatesan, J., Anil, S., Kim, S.E., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 369–382. [Google Scholar]
- GB 5009.268–2016; National Health Commission of the People’s Republic of China, State Food and Drug Administration. National Food Safety Standard: Determination of Multi Elements in Food. China Standards Press: Beijing, China, 2016.
- Noda, H. Health benefits and nutritional properties of nori. J. Appl. Phycol. 1993, 5, 255–258. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef]
- Vijay, K.; Balasundari, S.; Jeyashakila, R.; Velayathum, P.; Masilan, K.; Reshma, R. Proximate and mineral composition of brown seaweed from Gulf of Mannar. Int. J. Fish. Aquat. Stud. 2017, 5, 106–112. [Google Scholar]
- Rajapakse, N.; Kim, S.K. Nutritional and digestive health benefits of seaweed. Adv. Food. Nutr. Res. 2011, 4, 17–28. [Google Scholar]
- Xie, C.; Huang, J.; Sun, B.; Song, W.; Jong-Ahm, S.; Ma, J. Chemical composition of Porphyra haitanensis (Rhodophyta, Bangiales) in China. Chin. J. Mar. Drugs 2009, 28, 29–35, (In Chinese with English Abstract). [Google Scholar]
- Taboada, M.C.; Millán, R.; Miguez, M.I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J. Appl. Phycol. 2013, 25, 1271–1276. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.; Moreira, W. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Jayakody, M.M.; Vanniarachchy, M.; Wijesekara, W. Mineral content of selected seaweed varieties in Southern and North Western sea of Sri Lanka. Vidyodaya J. Sci. 2021, 24, 31–37. [Google Scholar] [CrossRef]
- Britton, D.; Schmid, M.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L.; Mundy, C.N. Seasonal and site-specific variation in the nutritional quality of temperate seaweed assemblages: Implications for grazing invertebrates and the commercial exploitation of seaweeds. J. Appl. Phycol. 2021, 33, 603–616. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Yao, H.; Wang, F.; Liu, F.; Liang, Z.; Wang, W.; Sun, X.; Li, X. Nutrition assessment on new Saccharina variety. Food Sci. 2016, 12, 95–98, (In Chinese with English Abstract). [Google Scholar]
- Soares, C.; Švarc-Gaji’c, J.; Oliva-Teles, M.T.; Pinto, E.; Nasti´c, N.; Savi´c, S.; Almeida, A.; Delerue-Matos, C. Mineral composition of subcritical water extracts of Saccorhiza Polyschides, a brown seaweedused as fertilizer in the north of Portugal. J. Mar. Sci. Eng. 2020, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Cheung, B.Y. Genetic Coefficient of Variance. In Encyclopedia of Personality and Individual Differences; Zeigler-Hill, V., Shackelford, T.K., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Fei, X.G. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 2004, 512, 145–151. [Google Scholar] [CrossRef]
- He, P.; Xu, S.; Zhang, H.; Wen, S.; Dai, Y.; Lin, S.; Yarish, C. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res. 2008, 42, 1281–1289. [Google Scholar] [CrossRef]
- Liang, Z.R.; Wang, W.J.; Liu, L.L.; Li, G.L.; Xia, B. Influence of commercial-scale seaweed cultivation on water quality: A case study in a typical laver culture area of the Yellow Sea, North China. J. Mar. Sci. Eng. 2022, 10, 681. [Google Scholar] [CrossRef]
- Kautsky, H.; Maarel, E.V.D. Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the baltic sea. Mar. Ecol. Prog. Ser. 1990, 60, 169–184. [Google Scholar] [CrossRef]
- Eriksson, B.K.; Bergström, L. Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuar. Coast. Shelf Sci. 2005, 62, 109–117. [Google Scholar] [CrossRef]
- Chung, I.C.; Hwang, R.L.; Lin, S.H.; Wu, T.M.; Wu, J.Y.; Su, S.W.; Chen, C.S.; Lee, T.M. Nutrients, temperature, and salinity as primary factors influencing the temporal dynamics of macroalgal abundance and assemblage structure on a reef of Du-Lang Bay in Taitung in southeastern Taiwan. Bot. Stud. 2007, 48, 419–433. [Google Scholar]
- Collado-Vides, L.; Mazzei, V.; Thyberg, T.; Lirman, D. Spatio-temporal patterns and nutrient status of macroalgae in a heavily managed region of Biscayne Bay, Florida, USA. Bot. Mar. 2011, 54, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.; Corzo, A.; Gordillo, F.J.; Robles, M.D.; Saez, E. Seasonal cycle of the gametophytic form of Porphyra umbilicalis: Nitrogen and carbon. Mar. Ecol. Prog. Ser. 1993, 99, 301–311. [Google Scholar] [CrossRef]
- Pereira, R.; Kraemer, G.; Yarish, C.; Sousa-Pinto, I. Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. Eur. J. Phycol. 2008, 43, 107–118. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 2011, 342, 149–164. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Cao, W.Q.; Chen, X.P.; Stomp, T.J.; Zou, C.Q. Global analysis of nitrogen fertilization effects on grain zinc and iron of major cereal crops. Glob. Food Secur. 2022, 33, 100631. [Google Scholar] [CrossRef]
- Seto, A.; Wang, H.L.; Hesseltine, C.W. Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem. Soc. 1984, 61, 892–894. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A.; Richmond, A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum correlation to growth rate. J. Phycol. 1988, 24, 328–332. [Google Scholar] [CrossRef]
- Renaud, S.M.; Zhou, H.C.; Parry, D.L.; Thinh, L.V.; Woo, K.C. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T. ISO). J. Appl. Phycol. 1995, 7, 595–602. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 2004, 40, 651–654. [Google Scholar] [CrossRef]
- Wada, H.; Gombos, Z.; Murata, N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 1990, 347, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.J.; Lee, Y.K.; Chao, T.M. Effects of temperature and growth phase on lipid and biochemical composition of Ishochrysis galbana TK1. J. Appl. Phycol. 1997, 9, 451–457. [Google Scholar] [CrossRef]
- An, M.L.; Mou, S.L.; Zhang, X.W.; Ye, N.H.; Zheng, Z.; Cao, S.N.; Xu, D.; Fan, X.; Wang, Y.T.; Miao, J.L. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour. Technol. 2013, 134, 151–157. [Google Scholar] [CrossRef]
- Cao, M.; Wang, D.; Mao, Y.; Kong, F.; Bi, G.; Xing, Q.; Weng, Z. Integrating transcriptomics and metabolomics to characterize the regulation of EPA biosynthesis in response to cold stress in seaweed Bangia fuscopurpurea. PLoS ONE 2017, 12, e0186986. [Google Scholar] [CrossRef] [Green Version]
- Los, D.; Horvath, I.; Vigh, L.; Murata, N. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett. 1993, 318, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Nishiuchi, T.; Seo, S.; Ohashi, Y.; Iba, K. Possible involvement of protein phosphorylation in the wound-responsive expression of Arabidopsis plastid ω-3 fatty acid desaturase gene. Plant Sci. 2000, 155, 153–160. [Google Scholar] [CrossRef]
- Suzuki, I.; Los, D.A.; Kanesaki, Y.; Mikami, K.; Murata, N. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 2000, 19, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Piepho, M.; Arts, M.T.; Wacker, A. Species-specific variation in fatty acid concentrations of four phytoplankton species: Does phosphorus supply influence the effect of light intensity or temperature? J. Phycol. 2012, 48, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Klyachko-Gurvich, G.L.; Tsoglin, L.N.; Doucha, J.; Kopetskii, J.; Ryabykh, I.B.S.; Semenenko, V.E. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol. Plant 1999, 107, 240–249. [Google Scholar] [CrossRef]
- Wainman, B.C.; Smith, R.E.H.; Rai, H.; Furgal, J.A. Irradiance and lipid production in natural algal populations. In Lipids in Freshwate Ecosystems; Arts, M.T., Wainman, B.C., Eds.; Springer: New York, NY, USA, 1999; pp. 45–70. [Google Scholar]
- Granum, E.; Kirkvold, S.; Myklestad, S.M. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: Diel variations and effects of N depletion. Mar. Ecol. Prog. Ser. 2002, 242, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Guschina, I.A.; Harwood, J.L. Algal lipids and effect of the environment on their biochemistry. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: New York, NY, USA, 2009; pp. 1–24. [Google Scholar]
- Thompson, G.A. Lipids and membrane function in green algae. BBA Lipids Lipid Metab. 1996, 1302, 17–45. [Google Scholar] [CrossRef]
- Lynn, S.G.; Kilham, S.S.; Kreeger, D.A.; Interlandi, S.J. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J. Phycol. 2000, 36, 510–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angell, A.R.; Mata, L.; de Nys, R.; Paul, N.A. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). J. Phycol. 2015, 51, 536–545. [Google Scholar] [CrossRef]
- Munda, I.M. Salinity dependent accumulation of Zn, Co and Mn in Scytosiphon lomentaria (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea. Bot. Mar. 1984, 27, 371–376. [Google Scholar] [CrossRef]
- Santos, P.H. Biotechnological Evaluation of Seaweeds as Bio-Fertilizer. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
Crude Nutrient (%) | Late September | Late October | Early December | |||||
---|---|---|---|---|---|---|---|---|
TlPh | MpPh | MpPh | TlPyA | MpPyA | MpPyB | MpPyC | MpPyD | |
Sugar | 28.47 ± 1.03 e | 27.74 ± 0.30 e | 25.01 ± 0.90 d | 19.44 ± 0.13 b | 19.50 ± 0.08 b | 19.88 ± 0.16 b | 17.32 ± 0.48 a | 22.40 ± 0.65 c |
Protein | 27.00 ± 0.11 a | 26.90 ± 0.60 a | 30.50 ± 0.20 b | 41.38 ± 0.04 d | 30.90 ± 1.12 b | 33.27 ± 0.41 c | 33.72 ± 1.62 c | 31.61 ± 0.35 b |
Fat | 0.66 ± 0.02 c | 0.52 ± 0.01 b | 0.55 ± 0.01 b | 0.68 ± 0.03 c | 0.74 ± 0.03 c | 0.68 ± 0.02 c | 0.36 ± 0.02 a | 0.65 ± 0.01 c |
Ash | 13.60 ± 0.15 b | 15.38 ± 0.21 c | 14.59 ± 0.26 c | 12.25 ± 0.21 a | 15.64 ± 0.41 c | 16.53 ± 0.66 d | 16.84 ± 0.03 d | 15.32 ± 0.65 c |
Amino acid (%) | ||||||||
Asp | 2.48 ± 0.06 | 2.56 ± 0.099 | 3.07 ± 0 | 4.48 ± 0.01 | 2.61 ± 0.10 | 3.00 ± 0.01 | 2.81 ± 0.04 | 2.75 ± 0.09 |
Thr | 1.36 ± 0.03 | 1.38 ± 0.05 | 1.62 ± 0 | 2.355 ± 0.01 | 1.51 ± 0.06 | 1.75 ± 0.01 | 1.63 ± 0.01 | 1.56 ± 0.06 |
Ser | 1.32 ± 0.02 | 1.35 ± 0.05 | 1.62 ± 0 | 2.28 ± 0.09 | 1.43 ± 0.06 | 1.65 ± 0 | 1.54 ± 0.02 | 1.52 ± 0.05 |
Glu | 2.79 ± 0.09 | 2.88 ± 0.11 | 3.58 ± 0.02 | 4.39 ± 0.05 | 3.23 ± 0.12 | 3.64 ± 0.01 | 3.40 ± 0.04 | 3.51 ± 0.11 |
Gly | 1.53 ± 0.04 | 1.51 ± 0.06 | 1.80 ± 0 | 2.51 ± 0.04 | 1.64 ± 0.07 | 1.88 ± 0 | 1.76 ± 0.01 | 1.76 ± 0.07 |
Ala | 3.03 ± 0.09 | 2.91 ± 0.14 | 3.42 ± 0.01 | 5.20 ± 0.01 | 4.03 ± 0.15 | 4.65 ± 0.03 | 4.30 ± 0 | 4.74 ± 0.13 |
Cys | 0.30 ± 0.01 | 0.29 ± 0.01 | 0.30 ± 0 | 0.46 ± 0.01 | 0.32 ± 0 | 0.37 ± 0.01 | 0.32 ± 0 | 0.38 ± 0.02 |
Val | 1.44 ± 0.04 | 1.51 ± 0.06 | 1.78 ± 0.01 | 2.51 ± 0.023 | 1.61 ± 0.06 | 1.89 ± 0.01 | 1.79 ± 0.01 | 1.67 ± 0.08 |
Met | 0.15 ± 0 | 0.19 ± 0 | 0.31 ± 0.01 | 0.56 ± 0.05 | 0.26 ± 0.02 | 0.30 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.01 |
Ile | 0.86 ± 0.03 | 0.95 ± 0.05 | 1.12 ± 0.01 | 1.59 ± 0.03 | 1.04 ± 0.042 | 1.21 ± 0 | 1.25 ± 0.01 | 1.05 ± 0.04 |
Leu | 1.86 ± 0.042 | 1.98 ± 0.09 | 2.32 ± 0.01 | 3.31 ± 0.09 | 2.19 ± 0.11 | 2.54 ± 0.01 | 2.38 ± 0.01 | 2.23 ± 0.09 |
Tyr | 0.75 ± 0.02 | 0.88 ± 0.04 | 1.05 ± 0.03 | 1.58 ± 0.08 | 0.94 ± 0.01 | 1.01 ± 0.05 | 0.92 ± 0.01 | 0.93 ± 0.01 |
Phe | 0.96 ± 0.03 | 1.01 ± 0.06 | 1.27 ± 0.01 | 1.65 ± 0.04 | 1.10 ± 0.04 | 1.27 ± 0.01 | 1.19 ± 0 | 1.13 ± 0.042 |
Lys | 1.27 ± 0.03 | 1.30 ± 0.05 | 1.56 ± 0.01 | 2.30 ± 0.05 | 1.42 ± 0.06 | 1.65 ± 0 | 1.55 ± 0.01 | 1.50 ± 0.04 |
His | 0.34 ± 0.01 | 0.36 ± 0.02 | 0.44 ± 0.01 | 0.64 ± 0.01 | 0.43 ± 0.01 | 0.51 ± 0.01 | 0.46 ± 0 | 0.46 ± 0.01 |
Arg | 1.48 ± 0.04 | 1.51 ± 0.06 | 1.82 ± 0.01 | 2.61 ± 0.01 | 1.67 ± 0.06 | 1.93 ± 0.01 | 1.79 ± 0.01 | 1.85 ± 0.06 |
Pro | 0.96 ± 0.06 | 1.00 ± 0.07 | 1.20 ± 0.05 | 1.71 ± 0.01 | 1.03 ± 0.07 | 1.24 ± 0 | 1.17 ± 0.02 | 1.11 ± 0.042 |
TAAs | 22.85 ± 0.62 a | 23.53 ± 0.96 a | 28.25 ± 0.06 b | 40.10 ± 0.01 d | 26.41 ± 1.02 b | 30.45 ± 0.02 c | 28.47 ± 0.23 bc | 28.36 ± 0.91 bc |
EAAs/TAAs | 0.35 ± 0 a | 0.35 ± 0 a | 0.35 ± 0 a | 0.36 ± 0 a | 0.35 ± 0 a | 0.35 ± 0 a | 0.35 ± 0 a | 0.33 ± 0 b |
DAAs/TAAs | 0.50 ± 0 a | 0.50 ± 0 a | 0.50 ± 0 a | 0.50 ± 0 a | 0.51 ± 0 a | 0.51 ± 0 a | 0.51 ± 0 a | 0.52 ± 0 b |
Fatty acid (mg 100 g−1) | ||||||||
C14:0 | 1.26 ± 0.01 | 0.89 ± 0.01 | 1.88 ± 0.01 | 0.87 ± 0.03 | 1.08 ± 0.01 | 0.94 ± 0.01 | 0.72 ± 0.01 | 0.80 ± 0 |
C15:0 | 0.41 ± 0 | 0.27 ± 0.01 | 0.36 ± 0 | 0.38 ± 0.02 | 0.31 ± 0.01 | 0.30 ± 0 | 0.17 ± 0 | 0.29 ± 0.01 |
C16:0 | 212.70 ± 4.84 | 157.51 ± 1.73 | 148.36 ± 0.43 | 180.62 ± 0.13 | 166.50 ± 0.47 | 154.305 ± 1.61 | 84.67 ± 0.52 | 154.23 ± 0.311 |
C16:1 | 0.70 ± 0.01 | 0.65 ± 0.01 | 1.45 ± 0 | 0.75 ± 0.04 | 0.56 ± 0.01 | 0.59 ± 0.01 | 0.53 ± 0.01 | 0.80 ± 0 |
C17:0 | 0.28 ± 0 | 0.16 ± 0 | 0.17 ± 0.01 | 0.21 ± 0.042 | 0.19 ± 0 | 0.16 ± 0 | 0.07 ± 0 | 0.14 ± 0.01 |
C18:0 | 8.30 ± 0.02 | 4.52 ± 0.06 | 2.27 ± 0 | 2.49 ± 0.141 | 4.02 ± 0.05 | 1.84 ± 0.02 | 1.04 ± 0.01 | 2.55 ± 0.01 |
C18:1n9c | 20.77 ± 0.24 | 14.91 ± 0.14 | 12.22 ± 0.01 | 9.60 ± 0.05 | 9.90 ± 0.02 | 6.20 ± 0.106 | 3.32 ± 0.01 | 9.77 ± 0 |
C18:2n6c | 19.56 ± 0.21 | 10.22 ± 0.12 | 9.90 ± 0.04 | 9.07 ± 0.19 | 8.09 ± 0 | 7.07 ± 0.06 | 4.06 ± 0.03 | 9.00 ± 0.01 |
C18:3n3 | 0.38 ± 0 | 0.14 ± 0 | 0.17 ± 0.01 | 0.44 ± 0.01 | 0.36 ± 0 | 0.39 ± 0.01 | 0.24 ± 0 | 0.33 ± 0 |
C18:3n6 | 1.61 ± 0.03 | 0.89 ± 0.01 | 0.90 ± 0.01 | 1.21 ± 0.03 | 1.10 ± 0.01 | 0.88 ± 0.01 | 0.47 ± 0 | 1.10 ± 0.01 |
C20:1 | 12.05 ± 0.16 | 6.76 ± 0.08 | 11.61 ± 0.03 | 21.50 ± 0.06 | 21.98 ± 0.06 | 14.41 ± 0.11 | 8.51 ± 0.05 | 22.99 ± 0.04 |
C20:2 | 4.34 ± 0.03 | 2.24 ± 0.03 | 3.24 ± 0.01 | 4.91 ± 0.07 | 4.94 ± 0.06 | 3.66 ± 0.07 | 2.31 ± 0.03 | 4.82 ± 0.01 |
C20:3n6 | 16.66 ± 0.22 | 7.65 ± 0.09 | 5.75 ± 0.02 | 10.44 ± 0.01 | 9.75 ± 0.01 | 7.42 ± 0.06 | 4.14 ± 0.03 | 10.54 ± 0.01 |
C20:4n6 | 8.28 ± 0.06 | 4.36 ± 0.04 | 6.50 ± 0.01 | 4.17 ± 0.08 | 2.61 ± 0 | 2.03 ± 0 | 1.42 ± 0.02 | 4.29 ± 0.01 |
C20:5n3 | 256.44 ± 2.48 | 213.57 ± 2.28 | 254.80 ± 0.35 | 385.67 ± 0.07 | 365.47 ± 1.82 | 412.32 ± 1.61 | 247.26 ± 0.23 | 360.41 ± 0.10 |
C22:1N9 | 70.28 ± 0.51 | 60.91 ± 0.88 | 42.82 ± 0.11 | 11.49 ± 0.06 | 12.66 ± 0.01 | 8.90 ± 0.06 | 5.63 ± 0.07 | 12.19 ± 0.03 |
TFAs | 633.99 ± 0.90 de | 485.62 ± 5.49 b | 502.35 ± 0.28 b | 643.79 ± 0.01 e | 609.48 ± 2.51 c | 621.39 ± 0.32 d | 364.54 ± 1.01 a | 594.22 ± 0.45 c |
TUFAs | 411.05 ± 3.96 c | 322.28 ± 3.68 b | 349.33 ± 0.16 b | 459.22 ± 0.23 e | 437.40 ± 1.97 d | 463.85 ± 1.90 e | 277.87 ± 0.47 a | 436.22 ± 0.16 d |
TUFAs/TFAs | 0.65 ± 0.01 a | 0.66 ± 0 a | 0.70 ± 0 b | 0.71 ± 0 b | 0.72 ± 0 bc | 0.75 ± 0 d | 0.76 ± 0 d | 0.73 ± 0 c |
EPA/TUFAs | 0.62 ± 0 a | 0.66 ± 0 b | 0.73 ± 0 c | 0.84 ± 0 d | 0.84 ± 0 d | 0.89 ± 0 e | 0.89 ± 0 e | 0.83 ± 0 d |
Minerals (mg kg−1 DW) | Late September | Late October | Early December | |||||
---|---|---|---|---|---|---|---|---|
TlPh | MpPh | MpPh | TlPyA | MpPyA | MpPyB | MpPyC | MpPyD | |
Na | 2035 ± 49 b | 3045 ± 106 c | 1190 ± 42 a | 3190 ± 7 c | 2775 ± 177 c | 3435 ± 7 d | 3857 ± 64 e | 3055 ± 134 c |
K | 19,250 ± 212 b | 32,250 ± 636 c | 42,250 ± 1485 d | 17,900 ± 71 a | 34,800 ± 3394 c | 41,950 ± 70 d | 42,270 ± 71 d | 32,000 ± 1980 c |
Ca | 1200 ± 56 a | 1460 ± 14 b | 1720 ± 28 cd | 1680 ± 28 c | 1710 ± 85 cd | 1810 ± 14 d | 2080 ± 42 e | 1750 ± 99 cd |
Mg | 3155 ± 120 a | 4550 ± 170 bc | 3515 ± 64 a | 5100 ± 70 c | 4380 ± 184 b | 5105 ± 7 c | 5495 ± 7 d | 4755 ± 205 bc |
Fe | 601 ± 63 c | 499 ± 57 b | 977 ± 75 e | 1340 ± 56 f | 316 ± 62 a | 604 ± 35 c | 848 ± 64 d | 1039 ± 86 e |
Zn | 21.70 ± 0.28 b | 14.55 ± 0.07 a | 17.95 ± 0.21 c | 36.70 ± 0.28 c | 286.50 ± 3.54 d | 706 ± 42 e | 724 ± 22 e | 36.20 ± 0.14 c |
Mn | 19.15 ± 0.636 b | 21.30 ± 0.28 b | 41.55 ± 0.35 e | 36.50 ± 0.14 d | 15.40 ± 1.13 a | 22.85 ± 1.06 b | 30.65 ± 3.04 c | 16.65 ± 0.50 a |
Cu | 9.69 ± 0.17 d | 7.47 ± 0.134 a | 8.97 ± 0.071 c | 10.10 ± 0.28 e | 7.69 ± 0.06 a | 8.23 ± 0.12 b | 8.03 ± 0.14 b | 9.18 ± 0.18 c |
Se | 0.26 ± 0.01 c | 0.29 ± 0.015 c | 0.29 ± 0.01 c | 0.34 ± 0.02 d | 0.12 ± 0.01 a | 0.10 ± 0.01 a | 0.18 ± 0.020 b | 0.13 ± 0.01 a |
Cd | 1.71 ± 0.02 c | 0.67 ± 0.011 a | 0.94 ± 0.01 b | 4.09 ± 0.127 e | 3.47 ± 0.35 d | 4.15 ± 0.01 e | 4.14 ± 0.12 e | 4.23 ± 0.09 e |
Pb | 0.39 ± 0.05 b | 0.32 ± 0.02 ab | 0.50 ± 0.03 c | 0.60 ± 0.01 d | 0.29 ± 0.03 a | 0.29 ± 0.03 a | 0.29 ± 0.02 a | 0.36 ± 0.011 b |
As | 16.55 ± 0.50 d | 20.35 ± 1.06 e | 25.50 ± 0.14 f | 11.90 ± 0.85 c | 8.10 ± 0.50 a | 9.54 ± 0.19 b | 8.35 ± 0.27 a | 19.30 ± 1.27 e |
Total | 26,309 ± 20 a | 41,868 ± 743 b | 49,747 ± 1693 c | 29,310 ± 234 a | 44,302 ± 3899 bc | 53,655 ± 135 d | 55,225 ± 130 e | 42,685 ± 2502 b |
Component | Initial Characteristic Value | ||
---|---|---|---|
Eigenvalue | Variance | Cumulative | |
1 | 13.086 | 65.43% | 65.43% |
2 | 4.142 | 20.71% | 86.14% |
3 | 2.772 | 13.86% | 100.00% |
N. yezoensis Strains | Component 1 | Component 2 | Component 3 | Synthetic Component |
---|---|---|---|---|
MpPyC | 1.286 | 0.466 | −0.616 | 0.852 |
MpPyB | 0.297 | −0.789 | 1.240 | 0.203 |
MpPyD | −0.844 | 1.188 | 0.354 | −0.257 |
MpPyA | −0.739 | −0.865 | −0.978 | −0.798 |
Variables | Component 1 | Component 2 | Component 3 |
---|---|---|---|
Sugar | −0.823 | 0.341 | 0.455 |
Protein | 0.929 | 0.071 | 0.362 |
Fat | −0.848 | −0.466 | 0.252 |
Ash | 0.963 | −0.243 | 0.116 |
TAAs | 0.445 | 0.017 | 0.895 |
EAAs/TAAs | 0.783 | −0.588 | −0.205 |
DAAs/TAAs | −0.641 | 0.764 | −0.073 |
TFAs | −0.813 | −0.386 | 0.436 |
TUFAs | −0.77 | −0.379 | 0.513 |
TUFAs/TFAs | 0.923 | 0.298 | 0.242 |
EPA/TUFAs | 0.917 | −0.28 | 0.283 |
Na | 0.958 | 0.224 | 0.178 |
K | 0.911 | −0.355 | 0.212 |
Ca | 0.943 | 0.282 | −0.179 |
Mg | 0.931 | 0.274 | 0.241 |
Fe | 0.17 | 0.937 | 0.304 |
Zn | 0.892 | −0.422 | 0.161 |
Mn | 0.992 | 0.129 | 0.014 |
Cu | −0.342 | 0.787 | 0.514 |
Se | 0.55 | 0.577 | −0.605 |
Nutritional Components | Correlation Degree | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ammonium-N | Nitrate-N | Nitrite-N | TN | P | N:P | pH | Sal | T | Tra | ||
Crude nutrient | Sugar | 0.816 | 0.549 | 0.951 | 0.421 | 0.992 | 0.979 | 0.960 | 0.963 | 0.964 | 0.926 |
Protein | 0.851 | 0.546 | 0.916 | 0.411 | 0.937 | 0.865 | 0.850 | 0.967 | 0.853 | 0.821 | |
Fat | 0.741 | 0.518 | 0.849 | 0.405 | 0.881 | 0.946 | 0.963 | 0.859 | 0.959 | 0.998 | |
Ash | 0.793 | 0.540 | 0.916 | 0.417 | 0.954 | 0.985 | 0.982 | 0.928 | 0.986 | 0.947 | |
Amino acid | TAAs | 0.836 | 0.541 | 0.908 | 0.408 | 0.954 | 0.880 | 0.864 | 0.958 | 0.868 | 0.835 |
EAAs/TAAs | 0.741 | 0.519 | 0.849 | 0.406 | 0.881 | 0.946 | 0.963 | 0.859 | 0.959 | 0.998 | |
DAAs/TAAs | 0.741 | 0.518 | 0.849 | 0.406 | 0.881 | 0.946 | 0.963 | 0.859 | 0.959 | 0.998 | |
Fatty acid | TFAs | 0.689 | 0.789 | 0.664 | 0.914 | 0.657 | 0.648 | 0.645 | 0.661 | 0.646 | 0.641 |
TUFAs | 0.542 | 0.664 | 0.512 | 0.852 | 0.506 | 0.495 | 0.492 | 0.510 | 0.493 | 0.488 | |
TUFAs/TFAs | 0.741 | 0.518 | 0.849 | 0.405 | 0.881 | 0.946 | 0.963 | 0.858 | 0.959 | 0.998 | |
EPA/TUFAs | 0.740 | 0.518 | 0.849 | 0.405 | 0.881 | 0.946 | 0.963 | 0.858 | 0.959 | 0.998 | |
Minerals | Na | 0.927 | 0.949 | 0.920 | 0.971 | 0.918 | 0.916 | 0.915 | 0.920 | 0.915 | 0.914 |
K | 0.831 | 0.834 | 0.830 | 0.836 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | |
Ca | 0.877 | 0.918 | 0.865 | 0.960 | 0.862 | 0.857 | 0.856 | 0.864 | 0.856 | 0.854 | |
Mg | 0.934 | 0.948 | 0.930 | 0.962 | 0.929 | 0.927 | 0.927 | 0.930 | 0.927 | 0.926 | |
Fe | 0.621 | 0.677 | 0.616 | 0.738 | 0.609 | 0.600 | 0.599 | 0.611 | 0.600 | 0.596 | |
Zn | 0.576 | 0.489 | 0.689 | 0.509 | 0.681 | 0.649 | 0.632 | 0.701 | 0.636 | 0.614 | |
Mn | 0.835 | 0.549 | 0.927 | 0.417 | 0.968 | 0.954 | 0.938 | 0.974 | 0.942 | 0.905 | |
Cu | 0.761 | 0.523 | 0.880 | 0.406 | 0.915 | 0.986 | 0.994 | 0.890 | 0.997 | 0.958 | |
Se | 0.741 | 0.518 | 0.849 | 0.406 | 0.881 | 0.945 | 0.962 | 0.858 | 0.958 | 0.997 | |
Cd | 0.755 | 0.525 | 0.868 | 0.410 | 0.902 | 0.970 | 0.988 | 0.878 | 0.983 | 0.996 | |
Pb | 0.740 | 0.518 | 0.848 | 0.405 | 0.880 | 0.945 | 0.962 | 0.858 | 0.958 | 0.997 | |
As | 0.763 | 0.524 | 0.885 | 0.406 | 0.920 | 0.990 | 0.989 | 0.895 | 0.993 | 0.953 |
Nutritional Components | Correlation Degree | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ammonium-N | Nitrate-N | Nitrite-N | TN | P | N:P | pH | Sal | T | Tra | ||
Crude nutrient | Sugar | 0.889 | 0.749 | 0.954 | 0.660 | 0.980 | 0.946 | 0.985 | 0.994 | 0.940 | 0.923 |
Protein | 0.893 | 0.756 | 0.951 | 0.663 | 0.974 | 0.943 | 0.982 | 0.998 | 0.937 | 0.920 | |
Fat | 0.860 | 0.749 | 0.986 | 0.645 | 0.975 | 0.975 | 0.978 | 0.956 | 0.981 | 0.963 | |
Ash | 0.827 | 0.721 | 0.963 | 0.626 | 0.931 | 0.971 | 0.934 | 0.914 | 0.976 | 0.995 | |
Amino acid | TAAs | 0.884 | 0.757 | 0.960 | 0.658 | 0.975 | 0.953 | 0.987 | 0.988 | 0.947 | 0.930 |
EAAs/TAAs | 0.827 | 0.722 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
DAAs/TAAs | 0.827 | 0.722 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
Fatty acid | TFAs | 0.435 | 0.537 | 0.408 | 0.653 | 0.413 | 0.406 | 0.413 | 0.417 | 0.406 | 0.403 |
TUFAs | 0.539 | 0.692 | 0.487 | 0.625 | 0.496 | 0.484 | 0.496 | 0.503 | 0.483 | 0.479 | |
TUFAs/TFAs | 0.827 | 0.721 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
EPA/TUFAs | 0.827 | 0.722 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
Minerals | Na | 0.762 | 0.792 | 0.750 | 0.815 | 0.752 | 0.749 | 0.751 | 0.753 | 0.748 | 0.747 |
K | 0.787 | 0.790 | 0.786 | 0.792 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | 0.786 | |
Ca | 0.652 | 0.708 | 0.634 | 0.745 | 0.638 | 0.634 | 0.637 | 0.639 | 0.633 | 0.632 | |
Mg | 0.819 | 0.841 | 0.811 | 0.855 | 0.812 | 0.811 | 0.812 | 0.813 | 0.810 | 0.809 | |
Fe | 0.460 | 0.557 | 0.435 | 0.634 | 0.440 | 0.435 | 0.440 | 0.443 | 0.434 | 0.432 | |
Zn | 0.864 | 0.749 | 0.981 | 0.644 | 0.984 | 0.973 | 0.986 | 0.964 | 0.967 | 0.949 | |
Mn | 0.893 | 0.771 | 0.953 | 0.665 | 0.959 | 0.946 | 0.966 | 0.969 | 0.940 | 0.923 | |
Cu | 0.845 | 0.736 | 0.983 | 0.635 | 0.956 | 0.985 | 0.959 | 0.938 | 0.998 | 0.981 | |
Se | 0.827 | 0.722 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
Cd | 0.830 | 0.724 | 0.968 | 0.628 | 0.936 | 0.976 | 0.938 | 0.919 | 0.981 | 0.997 | |
Pb | 0.827 | 0.722 | 0.964 | 0.626 | 0.932 | 0.972 | 0.934 | 0.915 | 0.977 | 0.995 | |
As | 0.880 | 0.762 | 0.979 | 0.658 | 0.980 | 0.966 | 0.985 | 0.980 | 0.965 | 0.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wang, W.; Liu, L.; Li, G. The Influence of Ecological Factors on the Contents of Nutritional Components and Minerals in Laver Based on Open Sea Culture System. J. Mar. Sci. Eng. 2022, 10, 864. https://doi.org/10.3390/jmse10070864
Liang Z, Wang W, Liu L, Li G. The Influence of Ecological Factors on the Contents of Nutritional Components and Minerals in Laver Based on Open Sea Culture System. Journal of Marine Science and Engineering. 2022; 10(7):864. https://doi.org/10.3390/jmse10070864
Chicago/Turabian StyleLiang, Zhourui, Wenjun Wang, Lulei Liu, and Guoliang Li. 2022. "The Influence of Ecological Factors on the Contents of Nutritional Components and Minerals in Laver Based on Open Sea Culture System" Journal of Marine Science and Engineering 10, no. 7: 864. https://doi.org/10.3390/jmse10070864
APA StyleLiang, Z., Wang, W., Liu, L., & Li, G. (2022). The Influence of Ecological Factors on the Contents of Nutritional Components and Minerals in Laver Based on Open Sea Culture System. Journal of Marine Science and Engineering, 10(7), 864. https://doi.org/10.3390/jmse10070864