The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Isolation and Culture of Cyanobacteria
2.2. The Morphology Observation of Cyanobacteria
2.3. The 16S rRNA Gene Analysis of Cyanobacteria
2.4. The 16S rRNA Gene High-Throughput Sequencing Analyses
2.5. Statistical Analysis
3. Results
3.1. The Morphology of Cyanobacteria
3.2. The 16S rRNA Gene Identification of Cyanobacteria
3.3. The Source of Cyanobacteria Contaminations
4. Discussion
4.1. Leptolyngbya and Nodosilinea Contaminated Neopyropia Germplasm
4.2. Leptolyngbya and Nodosilinea Were from Seawater and Neopyropia
4.3. Suggestions for Reducing Cyanobacteria Contamination in Neopyropia Germplasm
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, T.J.; Rhee, M.S. Health functionality and quality control of laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Mar. Drugs 2019, 18, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Lu, Q.; Brodie, J. A review of the bladed Bangiales (Rhodophyta) in China: History, culture and taxonomy. Eur. J. Phycol. 2017, 52, 251–263. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, L.; Sun, Z.; Yang, J.; Liu, G.; Niu, J.; Wang, G. Control of reactive oxygen species through antioxidant enzymes plays a pivotal role during the cultivation of Neopyropia yezoensis. J. Mar. Sci. Eng. 2022, 10, 109. [Google Scholar] [CrossRef]
- Barrento, S.; Camus, C.; Sousa-Pinto, I.; Buschmann, A.H. Germplasm banking of the giant kelp: Our biological insurance in a changing environment. Algal Res. 2016, 13, 134–140. [Google Scholar] [CrossRef]
- Yang, L.; Deng, Y.; Xu, G.; Russell, S.; Lu, Q.; Brodie, J. Redefining Pyropia (Bangiales, Rhodophyta): Four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J. Phycol. 2020, 56, 862–879. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, W.; Hu, C.; Deng, Y.; Xu, G.; Zhang, T.; Russell, S.; Zhu, J.; Lu, Q.; Brodie, J. A molecular phylogeny of the bladed Bangiales (Rhodophyta) in China provides insights into biodiversity and biogeography of the genus Pyropia. Mol. Phylogenet Evol. 2018, 120, 94–102. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Q.; Shen, S.; Shen, Z.; Tian, C.; Zhu, J. Cytological observations and rbcL, nrSSU gene sequence analyses of filamentous Bangiales (Rhodophyta) from China. J. Appl. Phycol. 2014, 27, 1355–1363. [Google Scholar]
- Zhou, W.; Hu, C.; Lu, Q.; Xu, G.; Yang, L.; Tian, C.; Deng, Y. Germplasm innovation and application of Pyropia yezoensis. J. Guangxi Acad. Sci. 2021, 37, 46–52. [Google Scholar]
- Ding, H.; Fei, Q.; Zhang, P.; Wang, T.; Yan, X. Isolation and characterization of a heat-resistant strain with high yield of Pyropia haitanensis induced by ultraviolet ray. Aquaculture 2020, 521, 735050. [Google Scholar] [CrossRef]
- Mikami, K. Diploid apogamy in red algal species of the genus Pyropia. J. Aquat. Res. Mar. Sci. 2019, 2019, 206–208. [Google Scholar]
- Zhong, C.; Aruga, Y.; Yan, X. Morphogenesis and spontaneous chromosome doubling during the parthenogenetic development of haploid female gametophytes in Pyropia haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2019, 31, 2729–2741. [Google Scholar] [CrossRef]
- Zhong, C.; Yan, X. Haploid spontaneous diploidization during apogamy of male gametophytes in Pyropia haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2019, 32, 1395–1403. [Google Scholar] [CrossRef]
- Royer, C.J.; Blouin, N.A.; Brawley, S.H. More than meets the eye: Regional specialisation and microbial cover of the blade of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Bot. Mar. 2018, 61, 459–465. [Google Scholar] [CrossRef]
- Tomitani, A.; Knoll, A.H.; Cavanaugh, C.M.; Ohno, T. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. USA 2006, 103, 5442–5447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.H.; Moon, K.H.; Kim, J.-Y.; Shim, J.; Klochkova, T.A. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 2014, 29, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, L.; Xu, K.; Xu, Y.; Ji, D.; Chen, C.; Xie, C. The cultivation of Pyropia haitanensis has important impacts on the seawater microbial community. J. Appl. Phycol. 2020, 32, 2561–2573. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Khurshid, A.; Tang, X.; Wang, J.; Khan, T.U.; Mao, Y. Structural and functional impacts of microbiota on Pyropia yezoensis and surrounding seawater in cultivation farms along coastal areas of the Yellow Sea. Microorganisms 2021, 9, 1291. [Google Scholar] [CrossRef]
- Bruno, L.; Billi, D.; Bellezza, S.; Albertano, P. Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Appl. Environ. Microbiol. 2009, 75, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Kormas, K.A.; Gkelis, S.; Vardaka, E.; Moustaka-Gouni, M. Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow Mediterranean lakes. Limnologica 2011, 41, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Santos, K.; Pietrasiak, N.; Bohunická, M.; Miscoe, L.H.; Kováčik, L.; Martin, M.P.; Johansen, J.R. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. Eur. J. Phycol. 2014, 49, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Perkerson, R.B.; Johansen, J.R.; Kovacik, L.; Brand, J.; Kastovsky, J.; Casamatta, D.A. A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea Gen. Nov. based on morphological and molecular data. J. Phycol. 2011, 47, 1397–1412. [Google Scholar] [CrossRef] [PubMed]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16s rRNA genes from cyanobacteria. Appl. Environ. Microb. 1997, 63, 3327–3332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, N.B.; Kolman, M.A.; Giani, A. Cyanobacteria diversity in alkaline saline lakes in the Brazilian Pantanal wetland: A polyphasic approach. J. Plankton. Res. 2016, 38, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Res. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Reddy, C.R. Unraveling the functions of the macroalgal microbiome. Front. Microbiol. 2015, 6, 1488. [Google Scholar] [CrossRef]
- Selvarajan, R.; Sibanda, T.; Venkatachalam, S.; Ogola, H.J.O.; Christopher Obieze, C.; Msagati, T.A. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 2019, 9, 19835. [Google Scholar] [CrossRef] [PubMed]
- Califano, G.; Kwantes, M.; Abreu, M.H.; Costa, R.; Wichard, T. Cultivating the macroalgal holobiont: Effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Front. Mar. Sci. 2020, 7, 52. [Google Scholar] [CrossRef]
- Casamatta, D.A.; Johansen, J.R.; Vis, M.L.; Broadwater, S.T. Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J. Phycol. 2005, 41, 421–438. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, W.; Jeon, S.M.; Kim, T.; Park, A.; Kim, J.; Heo, S.J.; Oh, C.; Shim, W.B.; Kang, D.H. Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J. Appl. Microbiol. 2015, 119, 1597–1612. [Google Scholar] [CrossRef] [Green Version]
- Ramos, V.; Morais, J.; Castelo-Branco, R.; Pinheiro, A.; Martins, J.; Regueiras, A.; Pereira, A.L.; Lopes, V.R.; Frazão, B.; Gomes, D.; et al. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: The case study of the newly established LEGE culture collection. J. Appl. Phycol. 2018, 30, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Montgomery, B.L. Determining cell shape: Adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 2011, 19, 278–285. [Google Scholar] [CrossRef]
- Hindák, F. Hormogonia in two nostocalean cyanophytes (cyanobacteria) from the genera Hapalosiphon and Fischerella. Biologia 2012, 67, 1075–1079. [Google Scholar] [CrossRef] [Green Version]
- Damerval, T.; Guglielmi, G.; Houmard, J.; Tandeau de Marsac, N. Hormogonium differentiation in the cyanobacterium Calothrix: A photoregulated developmental process. Plant Cell 1991, 3, 191–201. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, X.; Ding, L.; Zhang, X.; Lu, Q.; Xu, P. Color Atlas of Chinese Laver; China Agricultural Press: Beijing, China, 2016; pp. 94–98. [Google Scholar]
Strain | Filament Diameter (μm) | Cell Length (μm) | Cell Width (μm) | Apical Cell Shape | Pigmentation |
---|---|---|---|---|---|
YCR101 | 2.57 ± 0.22 a | 2.36 ± 0.48 a | 1.28 ± 0.04 a | Round | Purple-red |
YCR102 | 2.36 ± 0.27 a | 2.34 ± 0.58 a | 1.28 ± 0.19 a | Round | Purple-red |
YCR103 | 2.41 ± 0.14 a | 2.37 ± 0.55 a | 1.18 ± 0.18 a | Round | Purple-red |
YCR201 | 3.27 ± 0.28 b | 2.44 ± 0.46 a | 1.38 ± 0.50 b | Round | Purple-red |
YCR202 | 3.23 ± 0.39 b | 2.58 ± 0.46 a | 1.33 ± 0.18 b | Round | Purple-red |
YCR203 | 3.26 ± 0.40 b | 2.31 ± 0.45 a | 1.48 ± 0.16 b | Round | Purple-red |
YCG301 | 2.25 ± 0.16 c | 2.45 ± 0.33 a | 1.08 ± 0.13 c | Round or conical | Green |
YCG302 | 2.08 ± 0.21 c | 2.41 ± 0.29 a | 1.04 ± 0.14 c | Round or conical | Green |
YCG303 | 2.11 ± 0.26 c | 2.54 ± 0.32 a | 1.05 ± 0.10 c | Round or conical | Green |
Strain | YCR101 | YCR102 | YCR103 | YCR201 | YCR202 | YCR203 | YCR301 | YCR302 |
---|---|---|---|---|---|---|---|---|
YCR102 | 0 | |||||||
YCR103 | 0 | 0 | ||||||
YCR201 | 0.014 | 0.014 | 0.014 | |||||
YCR202 | 0.019 | 0.019 | 0.019 | 0.005 | ||||
YCR203 | 0.014 | 0.014 | 0.014 | 0 | 0.005 | |||
YCG301 | 0.093 | 0.093 | 0.093 | 0.090 | 0.090 | 0.090 | ||
YCG302 | 0.093 | 0.093 | 0.093 | 0.090 | 0.090 | 0.090 | 0 | |
YCG303 | 0.093 | 0.093 | 0.093 | 0.090 | 0.090 | 0.090 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Tian, C.; Hu, C.; Xu, G.; Yang, L.; Lu, Q.; Zhou, W. The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination. J. Mar. Sci. Eng. 2022, 10, 838. https://doi.org/10.3390/jmse10060838
Deng Y, Tian C, Hu C, Xu G, Yang L, Lu Q, Zhou W. The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination. Journal of Marine Science and Engineering. 2022; 10(6):838. https://doi.org/10.3390/jmse10060838
Chicago/Turabian StyleDeng, Yinyin, Cuicui Tian, Chuanming Hu, Guangping Xu, Lien Yang, Qinqin Lu, and Wei Zhou. 2022. "The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination" Journal of Marine Science and Engineering 10, no. 6: 838. https://doi.org/10.3390/jmse10060838
APA StyleDeng, Y., Tian, C., Hu, C., Xu, G., Yang, L., Lu, Q., & Zhou, W. (2022). The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination. Journal of Marine Science and Engineering, 10(6), 838. https://doi.org/10.3390/jmse10060838