Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Cultivation
2.2. Preparation of Biosorbent
2.3. Preparation of Cadmium Solution
2.4. Biosorption Equilibrium Experiments
2.5. Cadmium Removal Kinetics
2.6. Desorption Experiments
2.7. Desorption Studies of Cd
2.8. Statistical Analysis
3. Results and Discussion
3.1. Influence of Biomass Dosage on Cadmium Biosorption
3.2. Sorption Isotherms
3.3. pH Dependence of Biosorption
3.4. Kinetic studies of Cadmium Removal
3.5. Desorption Studies of Cd Adsorbed on Biomass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Environmental Protection Department. Marine Water Quality in Hong Kong in 2001; Environmental Protection Department, Government of the Hong Kong Special Administrative Region: Hong Kong, China, 2002; pp. 12-1–12-10. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, R.; Martino, C.; Roccheri, M.C. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019, 24, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environ. Technol. Innov. 2019, 17, 100503. [Google Scholar] [CrossRef]
- Zabochnicka-Świątek, M.; Krzywonos, M. Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol. J. Environ. Stud. 2014, 23, 551–561. [Google Scholar]
- Brinza, L.; Dring, M.J.; Gavrilescu, M. Marine micro- and macro-algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 2007, 6, 237–251. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Xu, S.J.; Wu, K.C.; Chan, S.C.Y.; Yau, Y.H.; Chan, K.K.; Lee, F.W.F. Investigation of growth, lipid productivity, and fatty acid profiles in marine bloom-forming dinoflagellates as potential feedstock for biodiesel. J. Mar. Sci. Eng. 2021, 8, 381. [Google Scholar] [CrossRef]
- Lee, T.C.; Chan, P.L.; Tam, N.F.; Xu, S.J.; Lee, F.W. Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Sci. Rep. 2021, 11, 202. [Google Scholar] [CrossRef]
- Keller, M.D.; Selvin, R.C.; Claus, W.; Guillard, R.R.L. Media for the culture of oceanic ultraphytoplankton. J. Phycol. 1987, 23, 633–638. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog. 1995, 11, 235–250. [Google Scholar] [CrossRef]
- Chaisksant, Y. Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga. Gracilaria fisheri. Environ. Technol. 2003, 24, 1501–1508. [Google Scholar] [CrossRef]
- Ping, X.S.P.; Lai, H.T.; Chen, J.P.; Yen, P.T. Biosorption peformance of two brown marine algae for removal of chromium and cadmium. J. Dispers. Sci. Technol. 2005, 25, 679–686. [Google Scholar]
- Nuhoglu, Y.; Oguz, E. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process. Biochem. 2003, 38, 1627–1631. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Gorecka, H. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 2004, 73, 147–153. [Google Scholar] [CrossRef]
- Sandau, E.; Sandau, P.; Pulz, O.; Zimmermann, M. Heavy metal sorption by marine algae and algal by-products. Acta Biotechnol. 1996, 16, 103–119. [Google Scholar] [CrossRef]
- Wilde, W.E.; Benemann, R.J. Bioremoval of heavy metal by the use of microalgae. Biotechnol. Adv. 1993, 11, 781–812. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kwon, T.S.; Baek, K.; Yang, J.W. Adsorption characteristics of metal ions by CO2-fixing Chlorella sp. HA-1. J. Ind. Eng. Chem. 2009, 15, 354–358. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by Blue-green Algae Spirulina sp.: Kinetics, Equilibrium and the Mechanism of the Process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef]
- Ahalya, N.; Ramachandra, T.V.; Kanamadi, R.D. Biosorption of Heavy Metals. Res. J. Chem. Environ. 2003, 7, 71–76. [Google Scholar]
- González, F.; Romera, E.; Ballester, A. Algal biosorption and biosorbents. In Microbial Biosorption of Metals; Kotrba, P., Mackova, M., Macek, T., Eds.; Springer Link: Dordrecht, The Netherlands, 2011; pp. 159–178. [Google Scholar]
- Zhang, X.; Zhao, X.; Wan, C.; Chen, B.; Bai, F. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res. 2016, 16, 427–433. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, L.; Song, S.; Farías, M.E.; Li, Y.; Tang, C. Cadmium removal from diluted wastewater by using high-phosphorus-culture modified microalgae. Chem. Phys. Lett. 2021, 771, 138561. [Google Scholar] [CrossRef]
- Febriantoa, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Viraraghavan, T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 2003, 37, 4486–4496. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef] [PubMed]
Metal Ions | Calculated Langmuir Constant | ||
---|---|---|---|
Cadmium | qmax (mmol/g) | k (m3/mg) | R2 |
0.0196 | 4.5260 | 0.9979 |
Biosorbent | Category | Maximum Adsorption Capacity qmax (mmol/g) | References |
---|---|---|---|
Procentrium triestinum (AD1) | Dinoflagellate | 0.018 | This study |
Spirulina sp. | Blue green algae | 0.012 | [16] |
Spirulina platensis | Blue green algae | 0.072 | [17] |
Codium fragile | Green algae | 0.083 | [18] |
Chlorella sp. | Green algae | 0.193 | [19] |
Metal Ion | Optimum pH | Algal Species | Reference |
---|---|---|---|
Cadmium (Cd) | 5 | Procentrium triestinum | This study |
Cadmium (Cd) | 4–6 | Gracilaria Fisheri | [13] |
Cadmium (Cd) | 6 | Scenedesmus obliquus | [23] |
Cadmium (Cd) | 6 | Didymogenes palatina XR | [24] |
Cadmium (Cd) | 7 | Spirulina sp. | [20] |
Experimental qe (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
k1 (/min) | qe, cal (mg/g) | R2 | k2 (g/mg/min) | qe, cal (mg/g) | R2 | |
0.7407 | 0.0011 | 0.129 | 0.528 | 0.224 | 0.714 | 0.999 |
Type of Biosorbent | Category | Effective Contact Time (h) | Reference |
---|---|---|---|
Prorocentrum triestinum | Dinoflagellate | 3 | This study |
Gracilaria fisheri | Red alga | 1 | [13] |
Mucor rouxii | Fungi | 6 | [26] |
Desorbent | HCl (0.1 M) | HNO3 (0.1 M) | EDTA (0.1 M) | NaOH (0.1 M) | Deionized Water |
---|---|---|---|---|---|
Recovery | 90.7% | 87.0% | 80.7% | 22.8% | 0.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.J.-L.; Wu, K.-C.; Lam, W.; Lee, F.W.-F. Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium. J. Mar. Sci. Eng. 2022, 10, 837. https://doi.org/10.3390/jmse10060837
Xu SJ-L, Wu K-C, Lam W, Lee FW-F. Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium. Journal of Marine Science and Engineering. 2022; 10(6):837. https://doi.org/10.3390/jmse10060837
Chicago/Turabian StyleXu, Steven Jing-Liang, Kam-Chau Wu, Winnie Lam, and Fred Wang-Fat Lee. 2022. "Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium" Journal of Marine Science and Engineering 10, no. 6: 837. https://doi.org/10.3390/jmse10060837
APA StyleXu, S. J. -L., Wu, K. -C., Lam, W., & Lee, F. W. -F. (2022). Evaluation of a Causative Species of Harmful Algal Blooming, Prorocentrum triestinum, as a Sustainable Source of Biosorption on Cadmium. Journal of Marine Science and Engineering, 10(6), 837. https://doi.org/10.3390/jmse10060837