Assessment of Three-Dimensional Interpolation Method in Hydrologic Analysis in the East China Sea
Abstract
:1. Introduction
2. Data
2.1. In Situ Observations
2.2. MODIS SST Data
3. Methodology
3.1. The RBF Method
3.2. The 3D IDW Method and the 3D CPF Method
3.3. Experimental Results
3.4. The 2D RBF Method
4. Application
4.1. Reconstruction and Water Mass Analysis
4.2. Comparison with Satellite-Derived SST
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weng, X.C.; Wang, C.M. A Preliminary Study on the T-S Characteristics and the Origin of Taiwan Warm Current Water in Summer. Stud. Mar. Sin. 1984, 21, 113–134. [Google Scholar]
- Guan, B.X. Major Features of the Shallow Water Hydrography in the East China Sea and Huanghai Sea. In Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1984; Volume 39, pp. 1–13. [Google Scholar] [CrossRef]
- Su, J.L.; Pan, Y.Q. On the Shelf Circulation North of Taiwan. Acta Oceanol. Sin. 1987, 6, 1–20. [Google Scholar]
- Zhou, F.; Xue, H.; Huang, D.; Xuan, J.; Ni, X.; Xiu, P.; Hao, Q. Cross-shelf exchange in the shelf of the East China Sea. J. Geophys. Res. Ocean. 2015, 120, 1545–1572. [Google Scholar] [CrossRef]
- Lie, H.J.; Cho, C.H.; Lee, J.H.; Lee, S. Structure and Eastward Extension of the Changjiang River Plume in the East China Sea. J. Geophys. Res. Ocean. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Ichikawa, H.; Chaen, M. Seasonal Variation of Heat and Freshwater Transports by the Kuroshio in the East China Sea. J. Mar. Syst. 2000, 24, 119–129. [Google Scholar] [CrossRef]
- Qi, J.; Yin, B.; Zhang, Q.; Yang, D.; Xu, Z. Analysis of Seasonal Variation of Water Masses in East China Sea. Chin. J. Oceanol. Limnol. 2014, 32, 958–971. [Google Scholar] [CrossRef]
- Wang, J.; Yu, F.; Ren, Q.; Si, G.; Wei, C. The Observed Variations of the North Intrusion of the Bottom Taiwan Warm Current Inshore Branch and Its Response to Wind. Reg. Stud. Mar. Sci. 2019, 30, 100690. [Google Scholar] [CrossRef]
- Qiu, B.; Toda, T.; Imasato, N. On Kuroshio Front Fluctuations in the East China Sea Using Satellite and in Situ Observational Data. J. Geophys. Res. Ocean. 1990, 95, 18191–18204. [Google Scholar] [CrossRef]
- Chang, Y.; Shimada, T.; Lee, M.A.; Lu, H.J.; Sakaida, F.; Kawamura, H. Wintertime Sea Surface Temperature Fronts in the Taiwan Strait. Geophys. Res. Lett. 2006, 33, 5–8. [Google Scholar] [CrossRef]
- Yin, W.; Huang, D. Short-Term Variations in the Surface Upwelling off Northeastern Taiwan Observed via Satellite Data. J. Geophys. Res. Ocean. 2019, 124, 939–954. [Google Scholar] [CrossRef]
- Mandal, S.; Behera, N.; Gangopadhyay, A.; Susanto, R.D.; Pandey, P.C. Evidence of a Chlorophyll “Tongue” in the Malacca Strait from Satellite Observations. J. Mar. Syst. 2021, 223, 103610. [Google Scholar] [CrossRef]
- Mandal, S.; Susanto, R.D.; Ramakrishnan, B. On Investigating the Dynamical Factors Modulating Surface Chlorophyll-a Variability along the South Java Coast. Remote Sens. 2022, 14, 1745. [Google Scholar] [CrossRef]
- Kilpatrick, T.; Xie, S.P.; Miller, A.J.; Schneider, N. Satellite Observations of Enhanced Chlorophyll Variability in the Southern California Bight. J. Geophys. Res. Ocean. 2018, 123, 7550–7563. [Google Scholar] [CrossRef]
- Siswanto, E.; Horii, T.; Iskandar, I.; Gaol, J.L.; Setiawan, R.Y.; Susanto, R.D. Impacts of Climate Changes on the Phytoplankton Biomass of the Indonesian Maritime Continent. J. Mar. Syst. 2020, 212, 103451. [Google Scholar] [CrossRef]
- Yu, Y.; Xing, X.; Liu, H.; Yuan, Y.; Wang, Y.; Chai, F. The Variability of Chlorophyll-a and Its Relationship with Dynamic Factors in the Basin of the South China Sea. J. Mar. Syst. 2019, 200, 103230. [Google Scholar] [CrossRef]
- Isa, N.S.; Akhir, M.F.; Kok, P.H.; Daud, N.R.; Khalil, I.; Roseli, N.H. Spatial and Temporal Variability of Sea Surface Temperature during El-Niño Southern Oscillation and Indian Ocean Dipole in the Strait of Malacca and Andaman Sea. Reg. Stud. Mar. Sci. 2020, 39, 101402. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Shee, A.; Venkatesan, R. Upper Ocean and Subsurface Variability in the Bay of Bengal During Cyclone ROANU: A Synergistic View Using In Situ and Satellite Observations. Pure Appl. Geophys. 2018, 175, 4605–4624. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Hoffman, M.J.; Murphy, R.R.; Zaitchik, B.F. Geospatial Interpolation of MODIS-Derived Salinity and Temperature in the Chesapeake Bay. Remote Sens. Environ. 2013, 135, 167–177. [Google Scholar] [CrossRef]
- Nie, Y.; Guo, J.; Sun, B.; Lv, X. An Evaluation of Apparent Color of Seawater Based on the In-Situ and Satellite-Derived Forel-Ule Color Scale. Estuar. Coast. Shelf Sci. 2020, 246, 107032. [Google Scholar] [CrossRef]
- Guo, J.; Nie, Y.; Li, S.; Lv, X. Application of Three-Dimensional Interpolation in Estimating Diapycnal Diffusivity in the South China Sea. J. Mar. Sci. Eng. 2020, 8, 832. [Google Scholar] [CrossRef]
- Hosoda, K.; Murakami, H.; Sakaida, F.; Kawamura, H. Algorithm and Validation of Sea Surface Temperature Observation Using MODIS Sensors Aboard Terra and Aqua in the Western North Pacific. J. Oceanogr. 2007, 63, 267–280. [Google Scholar] [CrossRef]
- Qin, H.; Chen, G.; Wang, W.; Wang, D.; Zeng, L. Validation and Application of MODIS-Derived SST in the South China Sea. Int. J. Remote Sens. 2014, 35, 4315–4328. [Google Scholar] [CrossRef]
- Ghanea, M.; Moradi, M.; Kabiri, K.; Mehdinia, A. Investigation and Validation of MODIS SST in the Northern Persian Gulf. Adv. Sp. Res. 2016, 57, 127–136. [Google Scholar] [CrossRef]
- Lam, N.S.N. Spatial Interpolation Methods: A Review. Am. Cartogr. 1983, 10, 129–150. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Wang, X.; Fu, Q.; Lv, X. Application of the Orthogonal Polynomial Fitting Method in Estimating Pm 2.5 Concentrations in Central and Southern Regions of China. Int. J. Environ. Res. Public Health 2019, 16, 1418. [Google Scholar] [CrossRef] [Green Version]
- Rocha, H.; Dias, J.M. Early Prediction of Durum Wheat Yield in Spain Using Radial Basis Functions Interpolation Models Based on Agroclimatic Data. Comput. Electron. Agric. 2019, 157, 427–435. [Google Scholar] [CrossRef]
- Geisser, S. The Predictive Sample Reuse Method with Applications. J. Am. Stat. Assoc. 1975, 70, 320–328. [Google Scholar] [CrossRef]
- Rocha, H. On the Selection of the Most Adequate Radial Basis Function. Appl. Math. Model. 2009, 33, 1573–1583. [Google Scholar] [CrossRef]
- Hubbert, S. Radial Basis Function Interpolation on a Sphere. Ph.D. Thesis, Imperial College London, London, UK, April 2002. [Google Scholar]
- Gutmann, H.M. A Radial Basis Function Method for Global Optimization. J. Glob. Optim. 2001, 19, 201–227. [Google Scholar] [CrossRef]
- Buhmann, M.D. Radial Basis Functions: Theory and Implementations, 1st ed.; Cambridge University Press: Cambridge, UK, 2003; pp. 4–5. [Google Scholar]
- Bartoli, A.; Perriollat, M.; Chambon, S. Generalized Thin-Plate Spline Warps. Int. J. Comput. Vis. 2010, 88, 85–110. [Google Scholar] [CrossRef]
- Yang, D.; Yin, B.; Liu, Z.; Feng, X. Numerical Study of the Ocean Circulation on the East China Sea Shelf and a Kuroshio Bottom Branch Northeast of Taiwan in Summer. J. Geophys. Res. Ocean. 2011, 116, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lian, E.; Yang, S.; Wu, H.; Yang, C.; Li, C.; Liu, J.T. Kuroshio Subsurface Water Feeds the Wintertime Taiwan Warm Current on the Inner East China Sea Shelf. J. Geophys. Res. Ocean. 2016, 121, 4790–4803. [Google Scholar] [CrossRef]
- Mao, H.L.; Hu, D.X.; Zhao, B.R.; Ding, Z.X. A cyclonic eddy in the northern East China Sea. In Proceedings of the International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Hangzhou, China, 12–16 April 1983. [Google Scholar]
- Narayanan, M.; Thirumalai, D.; Bharadwaj, A.K.; Thanabalan, P.; Dhileeban, N. Comparison and Validation Of “Sea Surface Temperature (SST)” Using MODIS and AVHRR Sensor Data. Int. J. Remote Sens. Geosci. 2013, 2, 2319–3484. [Google Scholar]
- García, M.J.L. SST Comparison of AVHRR and MODIS Time Series in the Western Mediterranean Sea. Remote Sens. 2020, 12, 2241. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the Bulk-Skin Temperature Difference and Its Impact on Satellite Remote Sensing of Sea Surface Temperature. J. Geophys. Res. 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
- Kawai, Y.; Wada, A. Diurnal Sea Surface Temperature Variation and Its Impact on the Atmosphere and Ocean: A Review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Masouin, A.; Marullo, S.; Maturi, E. Half a Century of Satellite Remote Sensing of Sea Surface Temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
Period | Stations | Observations |
---|---|---|
12 June 2010–20 June 2010 | 44 | 2515 |
1 Nov 2010–10 Nov 2010 | 45 | 2570 |
12 June 2011–25 June 2011 | 65 | 4931 |
12 Oct 2011–28 Oct 2011 | 67 | 4037 |
Change Rate | Percentage (Horizontal Direction) |
Change Rate | Percentage (Vertical Direction) | ||
---|---|---|---|---|---|
Summer | Temperature | ~10−6 | 56% | ~10−4–10−2 | 59% |
Salinity | ~10−6 | 68% | ~10−4–10−2 | 79% | |
Autumn | Temperature | ~10−6 | 54% | ~10−4–10−2 | 77% |
Salinity | ~10−6 | 68% | ~10−4–10−2 | 73% |
3D Interpolation Method | Temperature (%) | |||
---|---|---|---|---|
Summer 2010 | Summer 2011 | Autumn 2010 | Autumn 2011 | |
RBF lin | 2.14 × 10−1 | 1.81 × 10−1 | 7.70 × 10−2 | 1.15 × 10−1 |
RBF thp | 1.78 × 10−1 | 1.34 × 10−1 | 5.40 × 10−2 | 6.90 × 10−2 |
RBF cub | 1.88 × 10−1 | 1.34 × 10−1 | 5.20 × 10−2 | 6.70 × 10−2 |
RBF mult | 1.00 | 1.01 | 4.23 × 10−1 | 9.52 × 10−1 |
IDW | 2.79 | 3.76 | 1.32 | 2.25 |
CPF | 1.46 | 2.03 | 5.79 × 10−1 | 1.57 |
3D Interpolation Method | Salinity (%) | |||
---|---|---|---|---|
Summer 2010 | Summer 2011 | Autumn 2010 | Autumn 2011 | |
RBF lin | 1.54 × 10−1 | 4.30 × 10−2 | 4.00 × 10−2 | 4.20 × 10−2 |
RBF thp | 1.41 × 10−1 | 3.00 × 10−2 | 3.00 × 10−2 | 2.70 × 10−2 |
RBF cub | 1.49 × 10−1 | 3.10 × 10−2 | 2.90 × 10−2 | 2.40 × 10−2 |
RBF mult | 5.13 × 10−1 | 2.38 × 10−1 | 1.80 × 10−1 | 3.41 × 10−1 |
IDW | 1.14 | 5.30 × 10−1 | 6.18 × 10−1 | 7.48 × 10−1 |
CPF | 6.89 × 10−1 | 3.80 × 10−1 | 1.60 × 10−1 | 4.68 × 10−1 |
Period | Temperature ) | Salinity ) |
---|---|---|
Summer 2010 | 0.0283 | 0.0401 |
Summer 2011 | 0.0213 | 0.0200 |
Autumn 2010 | 0.0187 | 0.0259 |
Autumn 2011 | 0.0186 | 0.0220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Guo, J.; Wang, J.; Lv, X. Assessment of Three-Dimensional Interpolation Method in Hydrologic Analysis in the East China Sea. J. Mar. Sci. Eng. 2022, 10, 877. https://doi.org/10.3390/jmse10070877
Gao Y, Guo J, Wang J, Lv X. Assessment of Three-Dimensional Interpolation Method in Hydrologic Analysis in the East China Sea. Journal of Marine Science and Engineering. 2022; 10(7):877. https://doi.org/10.3390/jmse10070877
Chicago/Turabian StyleGao, Yuchun, Junting Guo, Jianfeng Wang, and Xianqing Lv. 2022. "Assessment of Three-Dimensional Interpolation Method in Hydrologic Analysis in the East China Sea" Journal of Marine Science and Engineering 10, no. 7: 877. https://doi.org/10.3390/jmse10070877
APA StyleGao, Y., Guo, J., Wang, J., & Lv, X. (2022). Assessment of Three-Dimensional Interpolation Method in Hydrologic Analysis in the East China Sea. Journal of Marine Science and Engineering, 10(7), 877. https://doi.org/10.3390/jmse10070877