Effect of Propeller Cup on the Reduction of Fuel Consumption in Realistic Weather Conditions
Abstract
:1. Introduction
2. Numerical Model
3. Results
3.1. Simulation in Calm Water
3.2. Simulation in Different Weather Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMO-MEPC. Reduction of GHG emissions from ships. In Fourth IMO GHG Study 2020; IMO: London, UK, 2020; Volume 53, pp. 1689–1699. [Google Scholar]
- Green Ship of the Future. 2019 Retrofit Project. Available online: https://greenship.org/project/2019-retrofit-series/ (accessed on 8 December 2021).
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine. Energy 2019, 168, 897–908. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Chiong, M.-C.; Kang, H.-S.; Shaharuddin, N.M.R.; Mat, S.; Quen, L.K.; Ten, K.-H.; Ong, M.C. Challenges and opportunities of marine propulsion with alternative fuels. Renew. Sustain. Energy Rev. 2021, 149, 111397. [Google Scholar] [CrossRef]
- Altosole, M.; Benvenuto, G.; Campora, U.; Laviola, M.; Zaccone, R. Simulation and performance comparison between diesel and natural gas engines for marine applications. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2017, 231, 690–704. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. A Review of the Use of Biodiesel as a Green Fuel for Diesel Engines. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T., Eds.; Taylor & Francis Group: London, UK, 2021; Volume 2, pp. 481–490. [Google Scholar]
- Elkafas, A.G.; Elgohary, M.M.; Shouman, M.R. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships. Environ. Sci. Pollut. Res. 2021, 28, 15210–15222. [Google Scholar] [CrossRef]
- Wärtsilä. Wärtsilä Advances Carbon Capture and Storage in Maritime as Part of LINCCS Consortium. Available online: https://www.wartsila.com/media/news/08-09-2021-wartsila-advances-carbon-capture-and-storage-in-maritime-as-part-of-linccs-consortium-2972116 (accessed on 10 January 2022).
- Irena, K.; Ernst, W.; Alexandros, C.G. The cost-effectiveness of CO2 mitigation measures for the decarbonisation of shipping. The case study of a globally operating ship-management company. J. Clean. Prod. 2021, 316, 128094. [Google Scholar] [CrossRef]
- Ventura, M.; Guedes Soares, C. Integration of a Voyage Model Concept into a Ship Design Optimization Procedure. In Towards Green Marine Technology and Transport; Guedes Soares, C., Dejhalla, R., Pavletic, D., Eds.; Taylor & Francis Group: London, UK, 2015; pp. 539–548. [Google Scholar]
- Zha, L.; Zhu, R.; Hong, L.; Huang, S. Hull form optimization for reduced calm-water resistance and improved vertical motion performance in irregular head waves. Ocean. Eng. 2021, 233, 109208. [Google Scholar] [CrossRef]
- Feng, Y.; el Moctar, O.; Schellin, T.E. Parametric Hull Form Optimization of Containerships for Minimum Resistance in Calm Water and in Waves. J. Mar. Sci. Appl. 2021, 20, 670–693. [Google Scholar] [CrossRef]
- Farkas, A.; Degiuli, N.; Martić, I.; Dejhalla, R. Numerical and experimental assessment of nominal wake for a bulk carrier. J. Mar. Sci. Technol. 2019, 24, 1092–1104. [Google Scholar] [CrossRef]
- Ammar, N.R.; Seddiek, I.S. Wind assisted propulsion system onboard ships: Case study Flettner rotors. Ships Offshore Struct. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Lakshmi, E.; Priya, M.; Achari, V.S. An overview on the treatment of ballast water in ships. Ocean Coast. Manag. 2021, 199, 105296. [Google Scholar] [CrossRef]
- Lu, K.-T.; Lui, H.-K.; Chen, C.-T.A.; Liu, L.-L.; Yang, L.; Dong, C.-D.; Chen, C.-W. Using Onboard-Produced Drinking Water to Achieve Ballast-Free Management. Sustainability 2021, 13, 7648. [Google Scholar] [CrossRef]
- Vettor, R.; Guedes Soares, C. Development of a ship weather routing system. Ocean Eng. 2016, 123, 1–14. [Google Scholar] [CrossRef]
- Zaccone, R.; Ottaviani, E.; Figari, M.; Altosole, M. Ship voyage optimization for safe and energy-efficient navigation: A dynamic programming approach. Ocean Eng. 2018, 153, 215–224. [Google Scholar] [CrossRef]
- Prpić-Oršić, J.; Vettor, R.; Faltinsen, O.M.; Guedes Soares, C. The influence of route choice and operating conditions on fuel consumption and CO2 emission of ships. J. Mar. Sci. Technol. 2016, 21, 434–457. [Google Scholar] [CrossRef] [Green Version]
- Vettor, R.; Tadros, M.; Ventura, M.; Guedes Soares, C. Route Planning of a Fishing Vessel in Coastal Waters with Fuel Consumption Restraint. In Maritime Technology and Engineering 3; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 167–173. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of Different Speed Reduction Strategies on Ship Fuel Consumption in Realistic Weather Conditions. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; Volume 1, pp. 553–561. [Google Scholar]
- Vinayak, P.P.; Prabu, C.S.K.; Vishwanath, N.; Prakash, S.O. Numerical simulation of ship navigation in rough seas based on ecmwf data. Brodogradnja 2021, 72, 19–58. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization Scheme for the Selection of the Propeller in Ship Concept Design. In Progress in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 233–239. [Google Scholar]
- Vlašić, D.; Degiuli, N.; Farkas, A.; Martić, I. The preliminary design of a screw propeller by means of computational fluid dynamics. Brodogradnja 2018, 69, 129–147. [Google Scholar] [CrossRef]
- Bacciaglia, A.; Ceruti, A.; Liverani, A. Controllable pitch propeller optimization through meta-heuristic algorithm. Eng. Comput. 2020, 37, 2257–2271. [Google Scholar] [CrossRef]
- Ghaemi, M.H.; Zeraatgar, H. Analysis of hull, propeller and engine interactions in regular waves by a combination of experiment and simulation. J. Mar. Sci. Technol. 2021, 26, 257–272. [Google Scholar] [CrossRef]
- Dai, K.; Li, Y.; Gong, J.; Fu, Z.; Li, A.; Zhang, D. Numerical study on propulsive factors in regular head and oblique waves. Brodogradnja 2022, 73, 37–56. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, T.; Su, Y.; Peng, H. Numerical prediction on vibration and noise reduction effects of propeller boss cap fins on a propulsion system. Brodogradnja 2020, 71, 1–18. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimum Design of a Container Ship’s Propeller from Wageningen B-Series at the Minimum BSFC. In Sustainable Development and Innovations in Marine Technologies; Georgiev, P., Guedes Soares, C., Eds.; Taylor & Francis Group: London, UK, 2020; pp. 269–274. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Coupled Engine-Propeller Selection Procedure to Minimize Fuel Consumption at a Specified Speed. J. Mar. Sci. Eng. 2021, 9, 59. [Google Scholar] [CrossRef]
- Tillig, F.; Ringsberg, J.; Mao, W.; Ramne, B. A generic energy systems model for efficient ship design and operation. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2017, 231, 649–666. [Google Scholar] [CrossRef]
- Marques, C.H.; Belchior, C.R.P.; Caprace, J.D. Optimising the engine-propeller matching for a liquefied natural gas carrier under rough weather. Appl. Energy 2018, 232, 187–196. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Design of Propeller Series Optimizing Fuel Consumption and Propeller Efficiency. J. Mar. Sci. Eng. 2021, 9, 1226. [Google Scholar] [CrossRef]
- MacPherson, D.M. Small Propeller Cup: A Proposed Geometry Standard and a New Performance Model. In Proceedings of the 8th Propeller and Shafting Symposium, Virginia Beach, VA, USA, 23–24 September 1997. [Google Scholar]
- Hwang, J.-L.; Tsai, J.-F.; Li, C.-Y. Cupped propeller test and analysis. Ship Technol. Res. 1995, 42, 186–192. [Google Scholar]
- Tsai, J.-F. Study on the cavitation characteristics of cupped foils. J. Mar. Sci. Technol. 1997, 2, 123–134. [Google Scholar] [CrossRef]
- Yari, E.; Moghadam, A.B. BEM applied to the cup effect on the partially submerged propeller performance prediction and ventilation pattern. J. Mar. Eng. Technol. 2020, 21, 159–177. [Google Scholar] [CrossRef]
- Samsul, M.B. Blade Cup Method for Cavitation Reduction in Marine Propellers. Pol. Marit. Res. 2021, 28, 54–62. [Google Scholar] [CrossRef]
- HydroComp. NavCad: Reliable and Confident Performance Prediction. Available online: https://www.hydrocompinc.com/solutions/navcad/ (accessed on 30 January 2019).
- Tadros, M.; Ventura, M.; Guedes Soares, C. Data Driven In-Cylinder Pressure Diagram Based Optimization Procedure. J. Mar. Sci. Eng. 2020, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Tadros, M.; Ventura, M.; Guedes Soares, C. A nonlinear optimization tool to simulate a marine propulsion system for ship conceptual design. Ocean Eng. 2020, 210, 107417. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization of the performance of marine diesel engines to minimize the formation of SOx emissions. J. Mar. Sci. Appl. 2020, 19, 473–484. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Simulation of the Performance of Marine Genset Based on Double-Wiebe Function. In Sustainable Development and Innovations in Marine Technologies; Georgiev, P., Guedes Soares, C., Eds.; Taylor & Francis Group: London, UK, 2020; pp. 292–299. [Google Scholar]
- MAN Diesel & Turbo. Four-Stroke Project Guides. Available online: https://www.man-es.com/marine/products/planning-tools-and-downloads/project-guides/four-stroke (accessed on 22 July 2022).
- Bentley. MAXSURF: Maximize Vessel Performance. Available online: https://www.bentley.com/en/products/product-line/offshore-structural-analysis-software/maxsurf (accessed on 4 April 2020).
- Oosterveld, M.; Van Oossanen, P. Further Computer-Analyzed Data of the Wageningen B-Screw Series. Int. Shipbuild. Prog. 1975, 22, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Holtrop, J. A statistical re-analysis of resistance and propulsion data. Int. Shipbuild. Prog. 1984, 31, 272–276. [Google Scholar]
- Holtrop, J. A Statistical Resistance Prediction Method With a Speed Dependent Form Factor. In Proceedings of the Scientific and Methodological Seminar on Ship Hydrodynamics (SMSSH ‘88), Varna, Bulgaria, 17–22 October 1988; Bulgarian Ship Hydrodynamics Centre: Varna, Bulgaria, 1988; pp. 1–7. [Google Scholar]
- Holtrop, J.; Mennen, G.G.J. An approximate power prediction method. Int. Shipbuild. Prog. 1982, 29, 166–170. [Google Scholar] [CrossRef]
- Islam, H.; Ventura, M.; Guedes Soares, C.; Tadros, M.; Abdelwahab, H.S. Comparison between Empirical and CFD Based Methods for Ship Resistance and Power Prediction. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; Volume 1, pp. 347–357. [Google Scholar]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Surrogate Models of the Performance and Exhaust Emissions of Marine Diesel Engines for Ship Conceptual Design. In Maritime Transportation and Harvesting of Sea Resources; Guedes Soares, C., Teixeira, A.P., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 105–112. [Google Scholar]
- The MathWorks Inc. Fmincon. Available online: https://www.mathworks.com/help/optim/ug/fmincon.html (accessed on 2 June 2017).
- Vettor, R.; Guedes Soares, C. Detection and Analysis of the Main Routes of Voluntary Observing Ships in the North Atlantic. J. Navig. 2015, 68, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Vettor, R.; Guedes Soares, C. Assessment of the storm avoidance effect on the wave climate along the main North Atlantic routes. J. Navig. 2016, 69, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Aertssen, G. The Effect of Weather on Two Classes of Container Ships in the North Atlantic. Nav. Archit. 1975, 1, 11–13. [Google Scholar]
- Carlton, J. Marine Propellers and Propulsion, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Burrill, L.C.; Emerson, A. Propeller cavitation: Further tests on 16in. propeller models in the King’s College cavitation tunnel. Int. Shipbuild. Prog. 1963, 10, 119–131. [Google Scholar] [CrossRef]
- MacPherson, D.M. Reliable Propeller Selection for Work Boats and Pleasure Craft: Techniques Using a Personal Computer. In Fourth Biennial Power Boat Symposium; SNAME: Alexandria, VA, USA, 1991. [Google Scholar]
- Saettone, S.; Taskar, B.; Steen, S.; Andersen, P. Experimental measurements of propulsive factors in following and head waves. Appl. Ocean Res. 2021, 111, 102639. [Google Scholar] [CrossRef]
- Keller, W.H. Extended Diagrams for Determining the Resistance and Required Power for Single-Screw Ships. Int. Shipbuild. Prog. 1973, 20, 133–142. [Google Scholar] [CrossRef]
Item | Unit | Value |
---|---|---|
Length waterline | m | 154.00 |
Breadth | m | 23.11 |
Draft | m | 10.00 |
Displacement | tonne | 27,690 |
Service speed | knot | 14.5 |
Maximum speed | knot | 16.0 |
Number of propellers | - | 1 |
Type of propellers | - | FPP |
Rated power | kW | 7140 |
Item | Unit | Value |
---|---|---|
Engine builder | - | MAN Energy Solutions |
Brand name | - | MAN |
Bore | mm | 320 |
Stroke | mm | 440 |
Displacement | liter | 4954 |
Number of cylinders | - | 14 |
Rated speed | rpm | 750 |
Rated power | kW | 7140 |
Parameters | Unit | No Cup | Light Cup | Medium Cup | Heavy Cup | |
---|---|---|---|---|---|---|
Propeller Type | Wageningen B-Series | |||||
Ship Speed | Vs | [kn] | 14.5 | 14.5 | 14.5 | 14.5 |
Cup | [%] | 0.0 | 0.5 | 1.0 | 1.5 | |
Propeller characteristics | D | [m] | 6.00 | 6.00 | 6.00 | 6.00 |
EAR | [-] | 0.47 | 0.78 | 0.81 | 0.45 | |
P | [m] | 6.58 | 6.38 | 6.26 | 5.59 | |
N | [RPM] | 75 | 71 | 68 | 68 | |
Thrust | [kN] | 576.49 | 576.49 | 576.49 | 576.49 | |
Torque | [kN.m] | 573.30 | 600.90 | 620.70 | 613.2 | |
ηo | [%] | 0.59 | 0.60 | 0.61 | 0.61 | |
J | [-] | 0.62 | 0.65 | 0.68 | 0.68 | |
KT | [-] | 0.28 | 0.31 | 0.34 | 0.33 | |
KQ | [-] | 0.05 | 0.05 | 0.06 | 0.06 | |
w | [-] | 0.38 | 0.38 | 0.38 | 0.38 | |
t | [-] | 0.19 | 0.19 | 0.19 | 0.19 | |
Cavitation | Tip Speed | [m/s] | 23.61 | 22.37 | 21.32 | 21.48 |
EARmin | [-] | 0.47 | 0.42 | 0.38 | 0.34 | |
Average loading pressure | [kPa] | 43.56 | 21.15 | 16.40 | 23.21 | |
Back Cavitation | [%] | 7.40 | 2.00 | 2.00 | 2.00 | |
Pitchmin | [m] | 4.97 | 5.25 | 5.51 | 5.47 | |
Gearbox characteristics | GBR | [-] | 9.50 | 9.63 | 10.06 | 9.88 |
Engine characteristics | Speed | [RPM] | 714 | 687 | 682 | 676 |
Brake Power | [kW] | 4682.30 | 4735.80 | 4671.00 | 4552.20 | |
Loading ratio | [%] | 65.6 | 66.3 | 65.4 | 63.8 | |
BSFC | [g/kW.h] | 192 | 189 | 188 | 187 | |
Fuel consumption | [l/nm] | 74.17 | 73.94 | 72.47 | 70.20 | |
Exhaust emissions | CO2 | [g/kW.h] | 607.99 | 599.27 | 595.47 | 591.98 |
NOx | [g/kW.h] | 6.68 | 7.40 | 7.31 | 6.95 | |
SOx | [g/kW.h] | 9.59 | 9.45 | 9.39 | 9.34 |
Item (Weighted Average) | Unit | No Cup | Light Cup | Medium Cup | Heavy Cup |
---|---|---|---|---|---|
Engine speed | rpm | 738 | 708 | 705 | 699 |
Brake power | kW | 5314 | 5370 | 5298 | 5161 |
Ship speed | Knot | 14.47 | 14.47 | 14.47 | 14.48 |
Fuel consumption | l/nm | 89.54 | 88.41 | 87.03 | 83.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of Propeller Cup on the Reduction of Fuel Consumption in Realistic Weather Conditions. J. Mar. Sci. Eng. 2022, 10, 1039. https://doi.org/10.3390/jmse10081039
Tadros M, Vettor R, Ventura M, Guedes Soares C. Effect of Propeller Cup on the Reduction of Fuel Consumption in Realistic Weather Conditions. Journal of Marine Science and Engineering. 2022; 10(8):1039. https://doi.org/10.3390/jmse10081039
Chicago/Turabian StyleTadros, Mina, Roberto Vettor, Manuel Ventura, and C. Guedes Soares. 2022. "Effect of Propeller Cup on the Reduction of Fuel Consumption in Realistic Weather Conditions" Journal of Marine Science and Engineering 10, no. 8: 1039. https://doi.org/10.3390/jmse10081039
APA StyleTadros, M., Vettor, R., Ventura, M., & Guedes Soares, C. (2022). Effect of Propeller Cup on the Reduction of Fuel Consumption in Realistic Weather Conditions. Journal of Marine Science and Engineering, 10(8), 1039. https://doi.org/10.3390/jmse10081039