Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup
Abstract
:1. Introduction
2. Literature Review on Experimental Modelling of Point-Absorber WEC Arrays
2.1. Manchester Bobber WEC Array
2.2. PerAWaT Project
2.3. Wavebob WEC Array
2.4. WECwakes Project
2.5. Wavestar WEC Array
2.6. Australian Maritime College WEC Array
2.7. Tu Delft WEC Array
2.8. Multipoint-Absorber WEC
2.9. Uppsala University’s WEC Array
2.10. M4 WEC
2.11. Floating Offshore Platform with 12 WECs
2.12. Three-Pontoon Semisubmersible Platform with Six WECs
3. Research Gaps
3.1. Wec Shape
3.2. PTO Design and Control Platform
3.3. Wave Conditions
3.4. Number of WECs and WEC Array Layouts
Campaign | Number | Separation | WEC Array | Target | Literature |
---|---|---|---|---|---|
ID | of WECs in an Array | Distance | Layouts | Measurements | References |
1 | 1, 3, 9, 12 | 2 D | Figure 2a | Capture width, (q) factor | [30] |
2 | 5 | 2 D | Figure 2b | Heave amplitude | [31] |
3 | 5, 10 | 2 D | Figure 3a | Wave field | [32] |
4 | 12 | 2 D | Figure 3b | Capture width, (q) factor | [33,34,35] |
5 | 22, 24 | 3 D | Figure 5a | Absorbed power, (q) factor | [36,62] |
6 | 22, 24 | 3 D | Figure 5a | (q) factor | [37] |
7 | 4 | 3 D | Figure 4b | Capture width, wave field | [38] |
8 | 4 | 8.5 D | Figure 6b | Absorbed power | [39] |
9 | 1–25 | 5–10–20 D | Figure 8b | (q) factor, wave field | [10,11,12] |
10 | 5 | 5 D | Figure 9b | Absorbed power | [40,58] |
11 | 1, 2, 4, 6 | 6 D; 4 D | Figure 11b | (q) factor | [9] |
12 | 2 | 2 D–6 D | Figure 12b | Absorbed power | [42] |
13 | 1, 10 | >3 D | Figure 13a | q factor | [43,44] |
14 | 6 | 4 D | Figure 14a | Absorbed power, (q) factor | [8,45,46] |
15 | 3, 6, 8 | 2 D–7 D | Figure 15a | Absorbed power, capture width | [47] |
16 | 12 | <2 D | Figure 16b | Rotational velocity | [53] |
17 | 6 | 1.25 D | Figure 17b | Absorbed power | [54] |
4. Design of the WECfarm Project Setup
4.1. Research Objectives and Design Requirements
- 1.
- A generic WEC concept, resulting in data useful for a wide range of point-absorber concepts.
- 2.
- WECs equipped with a highly accurate, real-time actively controllable PTO system with bidirectional power flow.
- 3.
- A control platform to implement GC and advanced control on WEC array level.
- 4.
- A wide range of wave conditions. These should include regular waves, irregular long- and short-crested waves, focused waves and extreme wave conditions.
- 5.
- A limited number of closely spaced WECs.
4.2. Hydrodynamic Design
4.3. Electromechanical Design
4.4. DAQ and Control Platform for the Five-WEC Array
4.5. The “WECfarm” WEC Array Approach
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile butadiene styrene |
AT | Amplifier telegram |
BEM | Boundary element method |
CFD | Computational fluid dynamics |
CNWT | CFD-based numerical wave tank |
COB | Coastal and Ocean Basin |
DAQ | Data acquisition system |
DOFs | Degrees of freedom |
ENI | EtherCAT network information |
EtherCAT | Ethernet for Control Automation Technology |
FNT | Float-neck-tank |
GC | Global control |
IC | Independent control |
I/O | Input and output |
JONSWAP | Joint North Sea Wave Project |
LTI | Linear time-invariant |
MDT | Master data telegram |
MPAWEC | Multipoint-absorber wave energy converter |
MPC | Model predictive control |
MWL | Mean water level |
OWC | Oscillating water column |
P | Proportional |
PerAWaT | Performance Assessment of Wave and Tidal array systems |
PI | Proportional–integral |
PID | Proportional–integral–derivative |
PLC | Programmable logic controller |
PMDC | Permanent magnet direct current |
PMSM | Permanent magnet synchronous motor |
PTFE | Polytetrafluoroethylene |
PTO | Power take-off |
QUB | Queen’s University Belfast |
RAO | Response amplitude operator |
RIMS | Research Institute of Small and Medium Shipbuilding |
SID | System identification |
SWL | Still water level |
UCC | University College Cork |
WEC | Wave energy converter |
References
- Falnes, J.; Lillebekken, P.M. Budal’s latching-controlled-buoy type wave-power plant. In Proceedings of the 5th European Wave Energy Conference, Cork, Ireland, 17–20 September 2003; pp. 233–244. [Google Scholar]
- Yang, S.H.; Ringsberg, J.W.; Johnson, E. Wave energy converters in array configurations—Influence of interaction effects on the power performance and fatigue of mooring lines. Ocean. Eng. 2020, 211, 107294. [Google Scholar] [CrossRef]
- Budal, K. Theory for absorption of wave power by a system of interacting bodies. J. Ship Res. 1977, 21, 248–253. [Google Scholar] [CrossRef]
- Xie, J.; Zuo, L. Dynamics and Control of Ocean Wave Energy Converters; Mechanical Engineering Department, State University of New York: Stony Brook, NY, USA, 2013. [Google Scholar]
- Coe, R.G.; Bacelli, G.; Wilson, D.G.; Abdelkhalik, O.; Korde, U.A.; Robinett, R.D. A comparison of control strategies for wave energy converterss. Int. J. Mar. Energy 2017, 20, 45–63. [Google Scholar] [CrossRef]
- Garcia-Rosa, P.B.; Bacelli, G.; Ringwood, J.V. Control-Informed Optimal Array Layout for Wave Farms. IEEE Trans. Sustain. Energy 2011, 6, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Göteman, M.; Giassi, M.; Engström, J.; Isberg, J. Advances and Challenges in Wave Energy Park Optimization—A Review. Front. Energy Res. 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Giassi, M.; Thomas, S.; Shahroozi, Z.; Engström, J.; Isberg, J.; Tosdevin, T.; Hann, M.; Göteman, M. Preliminary results from a scaled test of arrays of point-absorbers with 6 DOF. In Proceedings of the 13th EuropeanWave and Tidal Conference (EWTEC), Napoli, Italy, 1–6 September 2019. [Google Scholar]
- Nader, J.R.; Fleming, A.; Macfarlane, G.; Penesis, I.; Manasseh, R. Novel experimental modelling of the hydrodynamic interactions of arrays of wave energy converters. Int. J. Mar. Energy 2017, 20, 109–124. [Google Scholar] [CrossRef]
- Stratigaki, V.; Troch, P.; Stallard, T.; Forehand, D.; Kofoed, J.P.; Folley, M.; Benoit, M.; Babarit, A.; Kirkegaard, J. Wave basin experiments with large wave energy converter arrays to study interactions between the converters and effects on other users in the sea and the coastal area. Energies 2014, 7, 701–734. [Google Scholar] [CrossRef]
- Stratigaki, V.; Troch, P.; Stallard, T.; Forehand, D.; Folley, M.; Kofoed, J.P.; Benoit, M.; Babarit, A.; Vantorre, M.; Kirkegaard, J. Sea-state modification and heaving float interaction factors from physical modelling of arrays of wave energy converters. J. Renew. Sustain. Energy 2015, 7, 061705. [Google Scholar] [CrossRef] [Green Version]
- Stratigaki, V. Experimental Study and Numerical Modelling of Intra-Array Interactions and Extra-Array effects of Wave Energy Converter Arrays. Ph.D. Thesis, Ghent University, Faculty of Engineering and Architecture, Ghent, Belgium, 2014. [Google Scholar]
- WECwakes. Large Scale Experiments on Wave Energy Converter Farms to Study the Near-Field Effects between the Converters and the Far-Field Effects on Other Users in the Coastal Area. 2014. Available online: https://hydralab.eu/research--results/ta-projects/project/16/ (accessed on 20 May 2022).
- Balitsky, P.; Verao Fernandez, G.; Stratigaki, V.; Troch, P. Assessment of the power output of a two array clustered WEC farm using a BEM solver coupling and a wave propagation model. Energies 2018, 11, 2907. [Google Scholar] [CrossRef] [Green Version]
- Devolder, B.; Stratigaki, V.; Troch, P.; Rauwoens, P. CFD simulations of floating point absorber wave energy converter arrays subjected to regular waves. Energies 2018, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Verao Fernandez, G.; Stratigaki, V.; Troch, P. Irregular wave validation of a coupling methodology for numerical modelling of near and far field effects of wave energy converter arrays. Energies 2019, 12, 538. [Google Scholar] [CrossRef] [Green Version]
- Verbrugghe, T.; Stratigaki, V.; Altomare, C.; Domínguez, J.; Troch, P.; Kortenhaus, A. Implementation of open boundaries within a two way coupled SPH model to simulate nonlinear wave structure interactions. Energies 2019, 12, 697. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.; Tapoglou, E.; Ma, X.; Taylor, C.J.; Dorrell, R.M.; Parsons, D.R.; Aggidis, G. Hydrodynamic studies of floating structures: Comparison of wave-structure interaction modelling. Ocean. Eng. 2022, 249, 110878. [Google Scholar] [CrossRef]
- Sheng, W.; Tapoglou, E.; Ma, X.; Taylor, C.J.; Dorrell, R.M.; Parsons, D.R.; Aggidis, G. Time-Domain Implementation and Analyses of Multi-Motion Modes of Floating Structures. J. Mar. Sci. Eng. 2022, 10, 662. [Google Scholar] [CrossRef]
- Falnes, J. Ocean Waves and Oscillating systems: Linear Interactions Including Wave-Energy Extraction; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Falnes, J.; Hals, J. Heaving buoys, point absorbers and arrays. Philos. Trans. Math. Phys. Eng. Sci. 2012, 370, 246–277. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.; Alcorn, R.; Lewis, T. Physical modelling of wave energy converters. Ocean. Eng. 2014, 84, 29–36. [Google Scholar] [CrossRef]
- Gaebele, D.T.; Magana, M.E.; Brekken, T.K.A.; Sawodny, O. State space model of an array of oscillating water column wave energy converters with inter-body hydrodynamic coupling. Ocean. Eng. 2020, 195, 106668. [Google Scholar] [CrossRef]
- Kelly, T.; Dooley, T.; Campbell, J.; Ringwood, J. Modelling and Results for an Array of 32 Oscillating Water Columns. Ewtec Proc. 2013. Available online: http://eprints.maynoothuniversity.ie/6788/ (accessed on 29 May 2022).
- Lamont-Kane, P. Physical and Numerical Modelling of Wave Energy Converter Arrays. Ph.D. Thesis, Queen’s University Belfast, Faculty of Engineering and Physical Sciences, Belfast, UK, 2015. [Google Scholar]
- Doyle, S.; Aggidis, G.A. Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC. Renew. Energy 2020, 168, 365–374. [Google Scholar] [CrossRef]
- Doyle, S. Experimental and Numerical Investigation into the Energy Conversion Process in Single and Multi Chamber Oscillating Water Column Wave Energy Converters. Ph.D. Thesis, Lancaster University, Lancaster, UK, 2021. [Google Scholar]
- Budal, K.; Falnes, J.; Kyllingstad, A.; Oltedal, G. Experiments with point absorbers. In Proceedings of the First Symposium on Wave Energy Utilization, Gothenburg, Sweden, 30 October–1 November 1979; pp. 253–282. [Google Scholar]
- Count, B.M.; Jefferys, E.R. Wave power, the primary interface. In Proceedings of the 13th Symp. Naval Hydrodynamics, Tokyo, Japan, 6–10 October 1980; pp. 1–10. [Google Scholar]
- Stallard, T.; Stansby, P.K.; Williamson, A.J. An experimental study of closely spaced point absorber arrays. In Proceedings of the International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008. [Google Scholar]
- Thomas, S.; Weller, S.; Stallard, T. Float response within an array: Numerical and experimental comparison. In Proceedings of the 2nd International Conference on Ocean Energy (ICOE), Brest, France, 15–17 October 2008; Volume 1517. [Google Scholar]
- Alexandre, A.; Stallard, T.; Stansby, P.K. Transformation of wave spectra across a line of wave devices. In Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Weller, S.D.; Stallard, T.; Stansby, P. Experimental measurements of irregular wave interaction factors in closely spaced arrays. IET Renew. Power Gener. 2010, 4, 628–637. [Google Scholar] [CrossRef]
- Weller, S.D. Wave Energy Extraction from Device Arrays: Experimental Investigation in a Large Wave Facility. Ph.D. Thesis, University of Manchester, Faculty of Engineering and Physical Sciences, Manchester, UK, 2010. [Google Scholar]
- Manchester University. Manchester Bobber Array. 2008. Available online: https://personalpages.manchester.ac.uk/staff/robert.j.brown/Default_files/Manchester_Bobber.htm (accessed on 12 August 2021).
- Child, B.; Laporte Weywada, P. Verification and validation of a wave farm planning tool. In Proceedings of the 10th European Wave and Tidal Energy Conference Series-EWTEC, Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Folley, M.; Whittaker, T. Preliminary Cross-Validation of Wave Energy Converter Array Interactions. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering–OMAE, Nantes, France, 9–14 June 2013; Volume 10837. [Google Scholar]
- Lamont-Kane, P.; Folley, M.; Whittaker, T. Investigating Uncertainties in Physical Testing of Wave Energy Converter Arrays. In Proceedings of the 10th European Wave and Tidal Energy Conference Series-EWTEC, Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Mackay, E.; Cruz, J.; Livingstone, M.; Arnold, P. Validation of a Time-Domain Modelling Tool for Wave Energy Converter Arrays. In Proceedings of the 10th European Wave and Tidal Energy Conference, Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Ruiz, P.M.; Ferri, F.; Kofoed, J.P. Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool. Sustainability 2017, 9, 115. [Google Scholar] [CrossRef]
- Wave Star A/S. Wavestar. 2013. Available online: http://wavestarenergy.com/ (accessed on 15 June 2022).
- Boere, R.; Goudswaard, R.; Schneider, T.; van Vlijmen, B. Interaction of Ocean Wave Energy Converters. Bachelor Thesis, TU Delft, Delft, The Netherlands, 2018. [Google Scholar]
- Do, H.T.; Dang, T.D.; Ahn, K.K. A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean. Eng. 2018, 161, 337–349. [Google Scholar] [CrossRef]
- Binh, P.C.; Tri, N.M.; Dung, D.T.; Ahn, K.K.; Kim, S.J.; Koo, W. Analysis, design and experiment investigation of a novel wave energy converter. IET Gener. Transm. Distrib. 2015, 10, 460–469. [Google Scholar] [CrossRef]
- Giassi, M.; Engström, J.; Isberg, J.; Göteman, M. Comparison of Wave Energy Park Layouts by Experimental and Numerical Methods. J. Mar. Sci. Eng. 2020, 8, 750. [Google Scholar] [CrossRef]
- Thomas, S.; Giassi, M.; Göteman, M.; Hann, M.; Ransley, E.; Isberg, J.; Engström, J. Performance of a Direct-Driven Wave Energy Point Absorber with High Inertia Rotatory Power Take-off. Energies 2018, 11, 2332. [Google Scholar] [CrossRef] [Green Version]
- Moreno, E.C.; Stansby, P. The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites. Renew. Sustain. Energy Rev. 2019, 104, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Stansby, P.; Moreno, E.C.; Stallard, T.; Maggi, A. Three-float broad-band resonant line absorber with surge for wave energy conversion. Renew. Energy 2015, 78, 132–140. [Google Scholar] [CrossRef]
- Stansby, P.; Moreno, E.C.; Stallard, T. Capture width of the three-float multi-mode multi-resonance broadband wave energy line absorber M4 from laboratory studies with irregular waves of different spectral shape and directional spread. J. Ocean Eng. Mar. Energy 2015, 1, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Santo, H.; Taylor, P.H.; Stansby, P.K. The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K. Renew. Energy 2020, 146, 444–459. [Google Scholar] [CrossRef]
- Liao, Z.; Stansby, P.; Li, G.; Moreno, E.C. High-Capacity Wave Energy Conversion by Multi-Float, Multi-PTO, Control and Prediction: Generalized State-Space Modelling With Linear Optimal Control and Arbitrary Headings. IEEE Trans. Sustain. Energy 2021, 12, 2123–2131. [Google Scholar] [CrossRef]
- Stansby, P.; Moreno, E.C.; Stallard, T. Large capacity multi-float configurations for the wave energy converter M4 using a time-domain linear diffraction model. Appl. Ocean. Res. 2017, 68, 53–64. [Google Scholar] [CrossRef]
- Kamarlouei, M.; Gaspar, J.F.; Calvario, M.; Hallak, T.S.; Mendes, M.J.G.C.; Thiebaut, F.; Guedes Soares, C. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renew. Energy 2020, 152, 1171–1185. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Yang, Y.; Zheng, X.; Cui, L.; Zhao, C.; Liu, M.; Rao, X. Experimental investigation of semi-submersible platform combined with point-absorber array. Energy Convers. Manag. 2021, 245, 114623. [Google Scholar] [CrossRef]
- Principle Power. WindFloat. 2022. Available online: https://www.principlepower.com/windfloat (accessed on 15 June 2022).
- Beatty, S.; Ferri, F.; Bocking, B.; Kofoed, J.P.; Buckham, B. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters. Energies 2017, 10, 973. [Google Scholar] [CrossRef] [Green Version]
- Windt, C.; Davidson, J.; Ringwood, J. High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renew. Sustain. Energy Rev. 2018, 93, 610–630. [Google Scholar] [CrossRef] [Green Version]
- García-Violini, D.; Peña Sanchez, Y.; Faedo, N.; Windt, C.; Ferri, F.; Ringwood, J.V. Experimental implementation and validation of a broadband LTI energy-maximising control strategy for the Wavestar device. IEEE Trans. Control. Syst. Technol. 2020, 29, 2609–2621. [Google Scholar] [CrossRef]
- Bacelli, G.; Ringwood, J. Constrained control of arrays of wave energy devices. Int. J. Mar. Energy 2013, 3–4, 53–69. [Google Scholar] [CrossRef]
- De Backer, G.; Vantorre, M.; Frigaard, P.; Beels, C.; De Rouck, J. Bottom slamming on heaving point absorber wave energy devices. J. Mar. Sci. Technol. 2010, 15, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, G.; Ringwood, J.V. Nonlinear Froude-Krylov and viscous drag representations for wave energy converters in the computation/fidelity continuum. Ocean. Eng. 2017, 141, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Child, B.; Cruz, J.; Livingstone, M. The development of a tool for optimising of arrays of wave energy converters. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Shadman, M.; Estefen, S.F.; Rodriguez, C.A.; Nogueira, I.C.M. A geometrical optimization method applied to a heaving point absorber wave energy converter. Renew. Energy 2017, 115, 533–546. [Google Scholar] [CrossRef]
- Bacelli, G.; Spencer, S.J.; Patterson, D.C.; Coe, R.G. Wave tank and bench-top control testing of a wave energy converter. Appl. Ocean. Res. 2019, 86, 351–366. [Google Scholar] [CrossRef]
- Troch, P.; Stratigaki, V.; Devriese, P.; Kortenhaus, A.; De Maeyer, J.; Monballiu, J.; Toorman, E.; Rawoens, P.; Vanneste, D.; Suzuki, T.; et al. Design Features of the Upcoming Coastal and Ocean Basin in Ostend, Belgium. 2018. Available online: https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/8721 (accessed on 29 May 2022).
- Cargo, C.J.; Plummer, A.R.; Hillis, A.J.; Schlotter, M. Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves. Proc. IMechE Part A J. Power Energy 2011, 226, 98–111. [Google Scholar] [CrossRef]
- Verbrugghe, T. openWEC: Open Source Wave Energy Converter (WEC) Simulation Tool. Ghent University. 2018. Available online: https://users.ugent.be/~tverbrug/ (accessed on 2 June 2022).
- OAV. OAV Air Bearing Product Book & Design Guide: Where Aerospace Techonology Meets Air Bearing Systems. 2021. Available online: https://www.oavco.com/brochures (accessed on 7 July 2021).
- Beckhoff Automation. Beckhoff New Automation Technology, Operation Instructions, AM8000 and AM8500: Synchronous Servomotors, Version 4.9. 2022. Available online: https://download.beckhoff.com/download/document/motion/am8000-am8500-ba-en.pdf (accessed on 24 June 2022).
- Coe, R.G.; Bacelli, G.; Forbush, D. A practical approach to wave energy modeling and control. Renew. Sustain. Energy Rev. 2021, 142, 110791. [Google Scholar] [CrossRef]
- Faedo, N.; Carapellese, F.; Pasta, E.; Mattiazzo, G. On the principle of impedance-matching for underactuated wave energy harvesting systems. Appl. Ocean. Res. 2022, 118, 102958. [Google Scholar] [CrossRef]
Campaign ID | Authors | Year | Wave Testing Facility | DOFs |
---|---|---|---|---|
1 | Stallard et al. | 2008 | Wave flume, Manchester Univ. | Heave, surge |
2 | Thomas et al. | 2008 | Wave flume, Manchester Univ. | Heave, surge |
3 | Alexandre et al. | 2009 | Wave flume, Manchester Univ. | Heave, surge |
4 | Weller et al. | 2010 | Wave flume, Manchester Univ. | Heave, surge |
5 | Child et al. | 2013 | Wave basin, QUB | Heave |
6 | Folley et al. | 2013 | Wave basin, QUB | Heave |
7 | Lamont-Kane et al. | 2013 | Wave basin, QUB | Heave |
8 | Mackay et al. | 2013 | Wave basin, MARIN | 6-DOF |
9 | Stratigaki et al. | 2014 | Shallow Water Basin, DHI | Heave |
10 | Ruiz et al. | 2017 | Wave basin, Aalborg University | Heave |
11 | Nadar et al. | 2017 | Wave basin, University of Tasmania | Heave, surge |
12 | Boere et al. | 2018 | Towing tank, TU Delft | Heave |
13 | Do et al. | 2018 | Wave basin, RIMS Korea | Heave, surge |
14 | Giassi et al. | 2019 | Wave basin, Univ. of Plymouth | 6-DOF |
15 | Moreno et al. | 2019 | Lir wave basin, UCC | Heave, pitch, surge |
16 | Kamarlouei et al. | 2020 | Lir wave basin, UCC | Heave, pitch |
17 | Sun et al. | 2021 | Towing tank, Tianjin | Heave |
Campaign ID | WEC Floater Shape | WEC Diameter (m) | PTO System | Control Strategy |
---|---|---|---|---|
1 | Hemisphere-cylinder | 0.15 | PMDC motor | Resistive control |
2 | Hemisphere-cylinder | 0.15 | PMDC motor | Resistive control |
3 | Hemisphere-cylinder | 0.15 | PMDC motor | Resistive control |
4 | Hemisphere-cylinder | 0.15 | PMDC motor | Resistive control |
5 | Hemisphere-cylinder | 0.25 | Friction brake | Coulomb damping |
6 | Hemisphere-cylinder | 0.25 | Friction brake | Coulomb damping |
7 | Hemisphere-cylinder | 0.25 | Friction brake | Coulomb damping |
8 | FNT with torus | 0.93 | Linear motor | Resistive control |
9 | Hemisphere-cylinder | 0.315 | Friction brake | Resistive control |
10 | Hemisphere | 0.254 | Linear motor | Resistive control |
11 | Sphere | 0.25 | Linear motor | Resistive control |
12 | Cylinder | 0.25 | Linear hydraulic damper | Resistive control |
13 | Hemisphere-cylinder | 1.20 | Hydraulic motor | PID velocity control |
14 | Ellipsoidal | 0.488 | Rotational direct-driven generator | Resistive control |
15 | Hemisphere-cylinder | 0.20–0.35 | Linear hydraulic damper | Resistive control |
16 | Cone | n.a. | Rotational friction damper | Resistive control |
17 | Cone | 0.40 | Linear hydraulic damper | Resistive control |
Campaign | Wave | (Significant) Wave | (Peak) Wave |
---|---|---|---|
ID | Conditions | Height (m) | Period (s) |
1 | Regular | 0.026 | 0.50–1.55 |
2 | Regular | 0.026 | 0.57–1.33 |
3 | Irregular (Bretschneider spectrum) | 0.040 | 1.31 |
4 | Regular and irregular long-crested | 0.015–0.064 | 0.61–2.00 |
5 | Irregular (JONSWAP spectrum) | 0.025–0.038 | 0.89–1.26 |
6 | Irregular short- and long-crested (JONSWAP spectrum) | 0.025–0.050 | 0.70–1.26 |
7 | Regular and irregular long-crested | 0.014–0.075 | 0.67–1.26 |
8 | Regular and irregular (JONSWAP spectrum) | 0.095–0.191 | 1.42–2.48 |
9 | Regular and irregular long- and short-crested | 0.024–0.104 | 0.87–1.51 |
10 | Regular and irregular long-crested | 0.045–0.060 | 0.76–2.00 |
11 | Regular | 0.030–0.060 | 0.59–2.00 |
12 | Regular | 0.063–0.113 | 1.11–1.58 |
13 | Regular | 0.26 | 3.79 |
14 | Regular and irregular long-crested | 0.124–0.175 | 1.11–2.37 |
15 | Regular and irregular long- and short-crested | 0.04–0.06 | 0.70–2.0 |
16 | Regular and irregular long-crested | 0.010–0.139 | 0.60–4.0 |
17 | Regular and irregular long-crested | 0.08–0.0975 | 1.0–2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vervaet, T.; Stratigaki, V.; De Backer, B.; Stockman, K.; Vantorre, M.; Troch, P. Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup. J. Mar. Sci. Eng. 2022, 10, 1062. https://doi.org/10.3390/jmse10081062
Vervaet T, Stratigaki V, De Backer B, Stockman K, Vantorre M, Troch P. Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup. Journal of Marine Science and Engineering. 2022; 10(8):1062. https://doi.org/10.3390/jmse10081062
Chicago/Turabian StyleVervaet, Timothy, Vasiliki Stratigaki, Brecht De Backer, Kurt Stockman, Marc Vantorre, and Peter Troch. 2022. "Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup" Journal of Marine Science and Engineering 10, no. 8: 1062. https://doi.org/10.3390/jmse10081062
APA StyleVervaet, T., Stratigaki, V., De Backer, B., Stockman, K., Vantorre, M., & Troch, P. (2022). Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup. Journal of Marine Science and Engineering, 10(8), 1062. https://doi.org/10.3390/jmse10081062