Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source
Abstract
:1. Introduction
2. Methodological Approach
2.1. Geographic and Geotectonic Setting
2.2. Selection of Publications
2.3. Data Analysis
3. Results and Discussion
3.1. Systematic Review
3.2. Shallow Hydrothermal Vents
3.3. Natural vs. Anthropogenic
3.4. Risk Assessment
4. Future Research Challenges
4.1. Stable Isotopes
4.2. Biomarkers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Storelli, M.M. Potential Human Health Risks from Metals (Hg, Cd, and Pb) and Polychlorinated Biphenyls (PCBs) via Seafood Consumption: Estimation of Target Hazard Quotients (THQs) and Toxic Equivalents (TEQs). Food Chem. Toxicol. 2008, 46, 2782–2788. [Google Scholar] [CrossRef]
- Copat, C.; Arena, G.; Fiore, M.; Ledda, C.; Fallico, R.; Sciacca, S.; Ferrante, M. Heavy Metals Concentrations in Fish and Shellfish from Eastern Mediterranean Sea: Consumption Advisories. Food Chem. Toxicol. 2013, 53, 33–37. [Google Scholar] [CrossRef]
- Copat, C.; Vinceti, M.; D’Agati, M.G.; Arena, G.; Mauceri, V.; Grasso, A.; Fallico, R.; Sciacca, S.; Ferrante, M. Mercury and Selenium Intake by Seafood from the Ionian Sea: A Risk Evaluation. Ecotoxicol. Environ. Saf. 2014, 100, 87–92. [Google Scholar] [CrossRef]
- Copat, C.; Grasso, A.; Fiore, M.; Cristaldi, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. Trace Elements in Seafood from the Mediterranean Sea: An Exposure Risk Assessment. Food Chem. Toxicol. 2018, 115, 13–19. [Google Scholar] [CrossRef]
- Rubin, K. Degassing of Metals and Metalloids from Erupting Seamount and Mid-Ocean Ridge Volcanoes: Observations and Predictions. Geochim. Cosmochim. Acta 1997, 61, 3525–3542. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Fedotov, P.S.; Malik, N.A.; Karandashev, V.K. Nanoparticles of Volcanic Ash as a Carrier for Toxic Elements on the Global Scale. Chemosphere 2018, 200, 16–22. [Google Scholar] [CrossRef]
- De Neta, A.B.F.; do Nascimento, C.W.A.; Biondi, C.M.; van Straaten, P.; Bittar, S.M.B. Natural Concentrations and Reference Values for Trace Elements in Soils of a Tropical Volcanic Archipelago. Environ. Geochem. Health 2018, 40, 163–173. [Google Scholar] [CrossRef]
- Ruggieri, F.; Saavedra, J.; Fernandez-Turiel, J.L.; Gimeno, D.; Garcia-Valles, M. Environmental Geochemistry of Ancient Volcanic Ashes. J. Hazard. Mater. 2010, 183, 353–365. [Google Scholar] [CrossRef]
- Marques, R.; Prudêncio, M.I.; Abreu, M.M.; Russo, D.; Marques, J.G.; Rocha, F. Chemical Characterization of Vines Grown in Incipient Volcanic Soils of Fogo Island (Cape Verde). Environ. Monit. Assess. 2019, 191, 128. [Google Scholar] [CrossRef]
- Gonzalez, P.A.; Parga-Dans, E.; Blázquez, P.A.; Luzardo, O.P.; Peña, M.L.Z.; González, M.M.H.; Rodríguez-Hernández, Á.; Andújar, C. Elemental Composition, Rare Earths and Minority Elements in Organic and Conventional Wines from Volcanic Areas: The Canary Islands (Spain). PLoS ONE 2021, 16, e0258739. [Google Scholar] [CrossRef]
- Franco-Fuentes, E.; Moity, N.; Ramírez-González, J.; Andrade-Vera, S.; Hardisson, A.; González-Weller, D.; Paz, S.; Rubio, C.; Gutiérrez, Á.J. Metals in Commercial Fish in the Galapagos Marine Reserve: Contribution to Food Security and Toxic Risk Assessment. J. Environ. Manag. 2021, 286, 112188. [Google Scholar] [CrossRef] [PubMed]
- Anda, M.; Suparto; Sukarman. Characteristics of Pristine Volcanic Materials: Beneficial and Harmful Effects and Their Management for Restoration of Agroecosystem. Sci. Total Environ. 2016, 543, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Jitar, O.; Teodosiu, C.; Oros, A.; Plavan, G.; Nicoara, M. Bioaccumulation of Heavy Metals in Marine Organisms from the Romanian Sector of the Black Sea. N. Biotechnol. 2015, 32, 369–378. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, A.; Fraile-Nuez, E.; Santana-Casiano, J.M.; González-Dávila, M.; Escánez-Pérez, J.; Gómez-Ballesteros, M.; Tello, O.; Arrieta, J.M. Significant Release of Dissolved Inorganic Nutrients From the Shallow Submarine Volcano Tagoro (Canary Islands) Based on Seven-Year Monitoring. Front. Mar. Sci. 2020, 6, 829. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Espinosa, P.F.; Jonathan, M.P.; Morales-García, S.S.; Villegas, L.E.C.; Martínez-Tavera, E.; Muñoz-Sevilla, N.P.; Cardona, M.A. Metal Enrichment of Soils Following the April 2012–2013 Eruptive Activity of the Popocatépetl Volcano, Puebla, Mexico. Environ. Monit. Assess. 2015, 187, 717. [Google Scholar] [CrossRef]
- Colaço, A.; Raghukumar, C.; Mohandass, C.; Cardigos, F.; Santos, R.S. Effect of Shallow-Water Venting in Azores on a Few Marine Biota. Cah. Biol. Mar. 2006, 47, 359–364. [Google Scholar]
- Kwaansa-Ansah, E.E.; Nti, S.O.; Opoku, F. Heavy Metals Concentration and Human Health Risk Assessment in Seven Commercial Fish Species from Asafo Market, Ghana. Food Sci. Biotechnol. 2019, 28, 569–579. [Google Scholar] [CrossRef]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global Iodine Status in 2011 and Trends over the Past Decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Linhares, D.P.S.; Garcia, P.V.; dos Santos Rodrigues, A. Trace Elements in Volcanic Environments and Human Health Effects. In Trace Metals in the Environment-New Approaches and Recent Advances; Murillo-Tovar, M., Norena, H., Saeid, A., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Shirkhanloo, H.; Ghazaghi, M.; Mousavi, H.Z. Cadmium Determination in Human Biological Samples Based on Trioctylmethyl Ammonium Thiosalicylate as a Task-Specific Ionic Liquid by Dispersive Liquid–Liquid Microextraction Method. J. Mol. Liq. 2016, 218, 478–483. [Google Scholar] [CrossRef]
- Chalvatzaki, E.; Lazaridis, M. Development and Application of a Dosimetry Model (ExDoM2) for Calculating Internal Dose of Specific Particle-Bound Metals in the Human Body. Inhal. Toxicol. 2015, 27, 308–320. [Google Scholar] [CrossRef]
- Morrow, H. Cadmium and Cadmium Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Nowosad, J.; Kucharczyk, D.; Szmyt, M.; Łuczynska, J.; Tamás, M.; Horváth, L. Changes in Cadmium Concentration in Muscles, Ovaries, and Eggs of Silver European Eel (Anguilla Anguilla) during Maturation under Controlled Conditions. Animals 2021, 11, 1027. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, G.J.; Dietrich, M.; Kowalski, R.K.; Dobosz, S.; Karol, H.; Demianowicz, W.; Glogowski, J. Exposure of Rainbow Trout Milt to Mercury and Cadmium Alters Sperm Motility Parameters and Reproductive Success. Aquat. Toxicol. 2010, 97, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Witeska, M.; Sarnowski, P.; Ługowska, K.; Kowal, E. The Effects of Cadmium and Copper on Embryonic and Larval Development of Ide Leuciscus Idus L. Fish Physiol. Biochem. 2014, 40, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. Cadmium and Cadmium Compounds. In Beryllium, Cadmium, Mercury and Exposure in the Glass Manufacturing Industry; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Series; WHO: Lyon, France, 1993. [Google Scholar]
- Waalkes, M. Cadmium Carcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 533, 107–120. [Google Scholar] [CrossRef]
- Sabath, E.; Robles-Osorio, M.L. Renal Health and the Environment: Heavy Metal Nephrotoxicity. Nefrolgia 2012, 32, 279–286. [Google Scholar]
- França, Z.; Cruz, J.V.; Nunes, J.C.; Forjaz, V.H. Geologia Dos Açores: Uma Perspectiva Actual. Açoreana 2003, 10, 11e140. [Google Scholar]
- Couto, R.P.; Rodrigues, A.S.; Neto, A.I. Shallow-Water Hydrothermal Vents in the Azores (Portugal). Rev. De Gestão Costeira Integr. 2015, 15, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Wallenstein, F.M.; Couto, R.P.; Amaral, A.S.; Wilkinson, M.; Neto, A.I.; Rodrigues, A.S. Baseline Metal Concentrations in Marine Algae from São Miguel (Azores) under Different Ecological Conditions—Urban Proximity and Shallow Water Hydrothermal Activity. Mar. Pollut. Bull. 2009, 58, 438–443. [Google Scholar] [CrossRef]
- Dionísio, M.A.M. Megabalanus Azoricus (Pilsbry, 1916): Building a Scientific Basis for Its Management. Ph.D. Thesis, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal, 2013. [Google Scholar]
- Torres, P.; Rodrigues, A.; Prestes, A.C.L.; Neto, A.I.; Álvaro, N.; Martins, G.M. The Azorean Edible Abalone Haliotis Tuberculata, an Alternative Heavy Metal-Free Marine Resource? Chemosphere 2020, 242, 125177. [Google Scholar] [CrossRef]
- Ramalho, R.S.; Helffrich, G.; Madeira, J.; Cosca, M.; Thomas, C.; Quartau, R.; Hipólito, A.; Rovere, A.; Hearty, P.J.; Ávila, S.P. Emergence and Evolution of Santa Maria Island (Azores)—The Conundrum of Uplifted Islands Revisited. Geol. Soc. Am. Bull. 2017, 129, 372–390. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.C.G.; Hildenbrand, A.; Marques, F.O.; Sibrant, A.L.R.; de Campos, A.S. Catastrophic Flank Collapses and Slumping in Pico Island during the Last 130 Kyr (Pico-Faial Ridge, Azores Triple Junction). J. Volcanol. Geotherm. Res. 2015, 302, 33–46. [Google Scholar] [CrossRef]
- Laughton, A.S.; Whitmarsh, R.B. The Azores-Gibraltar Plate Boundary. In Geodynamics of Iceland and the North Atlantic Area; Springer: Dordrecht, The Netherlands, 1974; pp. 63–81. [Google Scholar]
- Needham, H.D.; Francheteau, J. Some Characteristics of the Rift Valley in the Atlantic Ocean near 36° 48′ North. Earth Planet. Sci. Lett. 1974, 22, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Searle, R. Tectonic Pattern of the Azores Spreading Centre and Triple Junction. Earth Planet Sci. Lett. 1980, 51, 415–434. [Google Scholar] [CrossRef]
- Gaspar, J.L.; Queiroz, G.; Ferreira, T.; Medeiros, A.R.; Goulart, C.; Medeiros, J. Chapter 4 Earthquakes and Volcanic Eruptions in the Azores Region: Geodynamic Implications from Major Historical Events and Instrumental Seismicity. Geol. Soc. Lond. Mem. 2015, 44, 33–49. [Google Scholar] [CrossRef]
- Santos, R.S.; Colaço, A.; Christiansen, S. Planning the Management of Deep-Sea Hydrothermal Vent Fields MPA in the Azores Triple Junction. In Arquipélago. Life and Marine Sciences; University of the Azores: Ponta Delgada, Protugal, 2003. [Google Scholar]
- Menezes, G.M. Demersal Fish Assemblages in the Atlantic Archipelagos of the Azores, Madeira, and Cape Verde; Ecologia Marinha, apresentada a Universidade dos Acores: Ponta Delgada, Portugal, 2003. [Google Scholar]
- IH. Roteiro Da Costa de Portugal: Arquipélago Dos Açores, 2nd ed.; Instituto Hidrográfico: Lisboa, Portugal, 2000. [Google Scholar]
- Morato, T.; Varkey, D.; Damaso, C.; Machete, M.; Santos, M.; Prieto, R.; Pitcher, T.; Santos, R. Evidence of a Seamount Effect on Aggregating Visitors. Mar. Ecol. Prog. Ser. 2008, 357, 23–32. [Google Scholar] [CrossRef]
- Diogo, H.; Pereira, J.G.; Higgins, R.M.; Canha, Â.; Reis, D. History, Effort Distribution and Landings in an Artisanal Bottom Longline Fishery: An Empirical Study from the North Atlantic Ocean. Mar. Policy 2015, 51, 75–85. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 10, 89. [Google Scholar] [CrossRef]
- Medeiros-Leal, W.M. Coastal Fisheries Resources of the Azores: An X-ray; Technical Report 1.1 of the MoniCO Program; IMAR/Okeanos: Horta, Portugal, 2020; p. 124. [Google Scholar]
- Torres, P.; Milla i Figueras, D.; Diogo, H.; Afonso, P. Risk Assessment of Coastal Fisheries in the Azores (North-Eastern Atlantic). Fish Res. 2022, 246, 106156. [Google Scholar] [CrossRef]
- Rona, P.A.; Boström, K.; Laubier, L.; Smith, K.L. Hydrothermal Processes at Seafloor Spreading Centers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 12. [Google Scholar]
- Chen, X.-G.; Lyu, S.-S.; Garbe-Schönberg, D.; Lebrato, M.; Li, X.; Zhang, H.-Y.; Zhang, P.-P.; Chen, C.-T.A.; Ye, Y. Heavy Metals from Kueishantao Shallow-Sea Hydrothermal Vents, Offshore Northeast Taiwan. J. Mar. Syst. 2018, 180, 211–219. [Google Scholar] [CrossRef]
- Zeng, Z.G. Submarine Hydrothermal Geology; China Science Pubisher: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Price, R.E.; Savov, I.; Planer-Friedrich, B.; Bühring, S.I.; Amend, J.; Pichler, T. Processes Influencing Extreme As Enrichment in Shallow-Sea Hydrothermal Fluids of Milos Island, Greece. Chem. Geol. 2013, 348, 15–26. [Google Scholar] [CrossRef]
- Cardigos, F.; Colaço, A.; Dando, P.R.; Ávila, S.P.; Sarradin, P.-M.; Tempera, F.; Conceição, P.; Pascoal, A.; Serrão Santos, R. Shallow Water Hydrothermal Vent Field Fluids and Communities of the D. João de Castro Seamount (Azores). Chem. Geol. 2005, 224, 153–168. [Google Scholar] [CrossRef]
- Cunha, L.; Amaral, A.; Medeiros, V.; Martins, G.M.; Wallenstein, F.F.M.M.; Couto, R.P.; Neto, A.I.; Rodrigues, A. Bioavailable Metals and Cellular Effects in the Digestive Gland of Marine Limpets Living Close to Shallow Water Hydrothermal Vents. Chemosphere 2008, 71, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Weeks, J.M.; Rainbow, P.S.; Deplge, M.H. Barnacles (Chthamalus Stellatus) as Biomonitors of Trace Metal Bioavailability in the Waters of Sao Miguel (Azores). Açoreana Suppl. 1995, 4, 103–111. [Google Scholar]
- Dionísio, M.; Costa, A.; Rodrigues, A. Heavy Metal Concentrations in Edible Barnacles Exposed to Natural Contamination. Chemosphere 2013, 91, 563–570. [Google Scholar] [CrossRef]
- Álvaro, N.V.; Neto, A.I.; Couto, R.P.; Azevedo, J.M.N.; Rodrigues, A.S. Crabs Tell the Difference—Relating Trace Metal Content with Land Use and Landscape Attributes. Chemosphere 2016, 144, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Tristão da Cunha, R.; Micaelo, C.; Rodrigues, A. dos S. Bioaccumulation of Metals and PCBs in Raja Clavata. Sci. Total Environ. 2016, 573, 1021–1030. [Google Scholar] [CrossRef]
- Dahms, H.U.; Hwang, J.S. Mortality in the Ocean-with Lessons from Hydrothermal Vents off Kueishan Tao, Ne-Taiwan. J. Mar. Sci. Technol. 2013, 21, 12. [Google Scholar]
- Hsiao, S.-H.; Fang, T.-H. Hg Bioaccumulation in Marine Copepods around Hydrothermal Vents and the Adjacent Marine Environment in Northeastern Taiwan. Mar. Pollut. Bull. 2013, 74, 175–182. [Google Scholar] [CrossRef]
- Mantha, G.; Awasthi, A.K.; Al-Aidaroos, A.M.; Hwang, J.-S. Diversity and Abnormalities of Cyclopoid Copepods around Hydrothermal Vent Fluids, Kueishantao Island, North-Eastern Taiwan. J. Nat. Hist. 2013, 47, 685–697. [Google Scholar] [CrossRef]
- Hernández, C.A.; Sangil, C.; Hernández, J.C. A New CO 2 Vent for the Study of Ocean Acidification in the Atlantic. Mar. Pollut. Bull. 2016, 109, 419–426. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Lozano, G.; Gutiérrez, Á.J.; Hardisson, A.; Rubio, C.; Paz, S.; Weller, D.G. The Influence of the Degassing Phase of the Tagoro Submarine Volcano (Canary Islands) on the Metal Content of Three Species of Cephalopods. Mar. Pollut. Bull. 2022, 182, 113964. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Halliday, A.N.; Alt, J.C.; Lee, D.-C.; Rehkämper, M.; Garcia, M.O.; Langmuir, C.H.; Su, Y. Cadmium, Indium, Tin, Tellurium, and Sulfur in Oceanic Basalts: Implications for Chalcophile Element Fractionation in the Earth. J. Geophys. Res. 2000, 105, 18927–18948. [Google Scholar] [CrossRef]
- Palma, C.; Lillebø, A.I.; Borges, C.; Souto, M.; Pereira, E.; Duarte, A.C.; de Abreu, M.P. Water Column Characterisation on the Azores Platform and at the Sea Mounts South of the Archipelago. Mar. Pollut. Bull. 2012, 64, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Palma, C.; Oliveira, A.; Valença, M.; Cascalho, J.; Pereira, E.; Lillebø, A.I.; Duarte, A.C.; Pinto de Abreu, M. Major and Minor Element Geochemistry of Deep-Sea Sediments in the Azores Platform and Southern Seamount Region. Mar. Pollut. Bull. 2013, 75, 264–275. [Google Scholar] [CrossRef]
- Al-Yousuf, M.H.; El-Shahawi, M.S.; Al-Ghais, S.M. Trace Metals in Liver, Skin and Muscle of Lethrinus Lentjan Fish Species in Relation to Body Length and Sex. Sci. Total Environ. 2000, 256, 87–94. [Google Scholar] [CrossRef]
- Canli, M.; Atli, G. The Relationships between Heavy Metal (Cd, Cr, Cu, Fe, Pb, Zn) Levels and the Size of Six Mediterranean Fish Species. Environ. Pollut. 2003, 121, 129–136. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Viñé, R.; Lozano, G.; Hardisson, A.; Rubio, C.; González-Weller, D.; Matos-Perdomo, E.; Gutiérrez, Á.J. Metal Content in Mullus Surmuletus in the Canary Islands (North-West African Atlantic). Environ. Sci. Pollut. Res. 2019, 26, 21044–21051. [Google Scholar] [CrossRef]
- Sun, T.; Wu, H.; Wang, X.; Ji, C.; Shan, X.; Li, F. Evaluation on the Biomagnification or Biodilution of Trace Metals in Global Marine Food Webs by Meta-Analysis. Environ. Pollut. 2020, 264, 113856. [Google Scholar] [CrossRef]
- Wang, W.X. Interactions of Trace Metals and Different Marine Food Chains. Mar. Ecol. Prog. Ser. 2002, 243, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.A.; Johnston, E.L.; Poore, A.G.B. Contamination of Marine Biogenic Habitats and Effects upon Associated Epifauna. Mar. Pollut. Bull. 2008, 56, 1057–1065. [Google Scholar] [CrossRef]
- Jeong, H.; Ra, K. Seagrass and Green Macroalgae Halimeda as Biomonitoring Tools for Metal Contamination in Chuuk, Micronesia: Pollution Assessment and Bioaccumulation. Mar. Pollut. Bull. 2022, 178, 113625. [Google Scholar] [CrossRef] [PubMed]
- Marsden, I.D.; Rainbow, P.S. Does the Accumulation of Trace Metals in Crustaceans Affect Their Ecology—The Amphipod Example? J. Exp. Mar. Biol. Ecol. 2004, 300, 373–408. [Google Scholar] [CrossRef]
- Dorta, P.; Rubio, C.; Lozano, G.; González-Weller, D.; Gutiérrez, Á.; Hardisson, A.; Revert, C. Metals in Mullus Surmuletus and Pseudupeneus Prayensis from the Canary Islands (Atlantic Ocean). J. Food Prot. 2015, 78, 2257–2263. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Gutiérrez, A.J.; Lozano, G.; González-Weller, D.; Rubio, C.; Caballero, J.M.; Hardisson, A.; Revert, C. Determination of Toxic Metals, Trace and Essentials, and Macronutrients in Sarpa Salpa and Chelon Labrosus: Risk Assessment for the Consumers. Environ. Sci. Pollut. Res. 2017, 24, 10557–10569. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.Z.; Jenkins, K.D. Metal Detoxification in Aquatic Organisms. Met. Speciat. Bioavailab. Aquat. Syst. 1995, 3, 479–578. [Google Scholar]
- de Boeck, G.; Ngo, T.T.H.; van Campenhout, K.; Blust, R. Differential Metallothionein Induction Patterns in Three Freshwater Fish during Sublethal Copper Exposure. Aquat. Toxicol. 2003, 65, 413–424. [Google Scholar] [CrossRef]
- Scudiero, R.; Temussi, P.A.; Parisi, E. Fish and Mammalian Metallothioneins: A Comparative Study. Gene 2005, 345, 21–26. [Google Scholar] [CrossRef]
- Roesijadi, G. Metallothionein and Its Role in Toxic Metal Regulation. Comp. Biochem. Physiol. C Pharm. Toxicol. Endocrinol. 1996, 113, 117–123. [Google Scholar] [CrossRef]
- Evans, D.W.; Dodoo, D.K.; Hanson, P.J. Trace Element Concentrations in Fish Livers: Implications of Variations with Fish Size in Pollution Monitoring. Mar. Pollut. Bull. 1993, 26, 329–334. [Google Scholar] [CrossRef]
- Brusle, J.; Anadon, G.G. The Structure and Function of Fish Liver. In Fish Morphology; Routledge: London, UK, 2017. [Google Scholar]
- WHO. Total Diet Studies: A Recipe for Safer Food. In GEMS/Food, Food Safety Department; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- US-EPA. Integrated Risk Information System-Database. 2007. Available online: https://www.govinfo.gov/app/details/FR-2007-12-21/E7-24844/summary (accessed on 13 October 2022).
- Araújo, D.F.; Knoery, J.; Briant, N.; Vigier, N.; Ponzevera, E. “Non-Traditional” Stable Isotopes Applied to the Study of Trace Metal Contaminants in Anthropized Marine Environments. Mar. Pollut. Bull. 2022, 175, 113398. [Google Scholar] [CrossRef]
- Eimers, M.C.; Evans, R.D.; Welbourn, P.M. Partitioning and Bioaccumulation of Cadmium in Artificial Sediment Systems: Application of a Stable Isotope Tracer Technique. Chemosphere 2002, 46, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Cloquet, C.; Carignan, J.; Libourel, G.; Sterckeman, T.; Perdrix, E. Tracing Source Pollution in Soils Using Cadmium and Lead Isotopes. Environ. Sci. Technol. 2006, 40, 2525–2530. [Google Scholar] [CrossRef] [PubMed]
- Shiel, A.E.; Weis, D.; Orians, K.J. Tracing Cadmium, Zinc and Lead Sources in Bivalves from the Coasts of Western Canada and the USA Using Isotopes. Geochim. Cosmochim. Acta 2012, 76, 175–190. [Google Scholar] [CrossRef]
- Shiel, A.E.; Weis, D.; Orians, K.J. Evaluation of Zinc, Cadmium and Lead Isotope Fractionation during Smelting and Refining. Sci. Total Environ. 2010, 408, 2357–2368. [Google Scholar] [CrossRef]
- Shiel, A.E.; Weis, D.; Cossa, D.; Orians, K.J. Determining Provenance of Marine Metal Pollution in French Bivalves Using Cd, Zn and Pb Isotopes. Geochim. Cosmochim. Acta 2013, 121, 155–167. [Google Scholar] [CrossRef]
- Chrastný, V.; Čadková, E.; Vaněk, A.; Teper, L.; Cabala, J.; Komárek, M. Cadmium Isotope Fractionation within the Soil Profile Complicates Source Identification in Relation to Pb–Zn Mining and Smelting Processes. Chem. Geol. 2015, 405, 1–9. [Google Scholar] [CrossRef]
- Petit, J.C.J.; Schäfer, J.; Coynel, A.; Blanc, G.; Chiffoleau, J.-F.; Auger, D.; Bossy, C.; Derriennic, H.; Mikolaczyk, M.; Dutruch, L.; et al. The Estuarine Geochemical Reactivity of Zn Isotopes and Its Relevance for the Biomonitoring of Anthropogenic Zn and Cd Contaminations from Metallurgical Activities: Example of the Gironde Fluvial-Estuarine System, France. Geochim. Cosmochim. Acta 2015, 170, 108–125. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Zhang, Y.; Cloquet, C.; Zhu, C.; Fan, H.; Luo, C. Tracing Sources of Pollution in Soils from the Jinding Pb–Zn Mining District in China Using Cadmium and Lead Isotopes. Appl. Geochem. 2015, 52, 147–154. [Google Scholar] [CrossRef]
- Martinková, E.; Chrastný, V.; Francová, M.; Šípková, A.; Čuřík, J.; Myška, O.; Mižič, L. Cadmium Isotope Fractionation of Materials Derived from Various Industrial Processes. J. Hazard. Mater. 2016, 302, 114–119. [Google Scholar] [CrossRef]
- Wiggenhauser, M.; Bigalke, M.; Imseng, M.; Müller, M.; Keller, A.; Murphy, K.; Kreissig, K.; Rehkämper, M.; Wilcke, W.; Frossard, E. Cadmium Isotope Fractionation in Soil–Wheat Systems. Environ. Sci. Technol. 2016, 50, 9223–9231. [Google Scholar] [CrossRef]
- Bridgestock, L.; Rehkämper, M.; van de Flierdt, T.; Murphy, K.; Khondoker, R.; Baker, A.R.; Chance, R.; Strekopytov, S.; Humphreys-Williams, E.; Achterberg, E.P. The Cd Isotope Composition of Atmospheric Aerosols from the Tropical Atlantic Ocean. Geophys. Res. Lett. 2017, 44, 2932–2940. [Google Scholar] [CrossRef] [Green Version]
- Salmanzadeh, M.; Hartland, A.; Stirling, C.H.; Balks, M.R.; Schipper, L.A.; Joshi, C.; George, E. Isotope Tracing of Long-Term Cadmium Fluxes in an Agricultural Soil. Environ. Sci. Technol. 2017, 51, 7369–7377. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Guo, Q.; Tian, L.; Kong, J.; Bai, Y.; Okoli, C.P.; Wang, L. Characteristics of Cadmium Accumulation and Isotope Fractionation in Higher Plants. Ecotoxicol. Environ. Saf. 2019, 174, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, Z.; Liu, J.; Bi, X.; Ning, Y.; Yang, S.; Yang, X. Apportionment of Sources of Heavy Metals to Agricultural Soils Using Isotope Fingerprints and Multivariate Statistical Analyses. Environ. Pollut. 2019, 249, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-J.; Ding, K.-B.; Zhang, P.; Qiu, H.; Cloquet, C.; Wen, H.-J.; Morel, J.-L.; Qiu, R.-L.; Tang, Y.-T. Cadmium Stable Isotope Variation in a Mountain Area Impacted by Acid Mine Drainage. Sci. Total Environ. 2019, 646, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wei, R.; Chen, H.; Zhu, C.; Liu, Y.; Wen, H.; Guo, Q.; Ma, J. Cadmium Isotope Constraints on Heavy Metal Sources in a Riverine System Impacted by Multiple Anthropogenic Activities. Sci. Total Environ. 2021, 750, 141233. [Google Scholar] [CrossRef]
- Zhong, Q.; Yin, M.; Zhang, Q.; Beiyuan, J.; Liu, J.; Yang, X.; Wang, J.; Wang, L.; Jiang, Y.; Xiao, T.; et al. Cadmium Isotopic Fractionation in Lead-Zinc Smelting Process and Signatures in Fluvial Sediments. J. Hazard. Mater. 2021, 411, 125015. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhou, Y.; Tsang, D.C.W.; Liu, J.; Yang, X.; Yin, M.; Wu, S.; Wang, J.; Xiao, T.; Zhang, Z. Cadmium Isotopes as Tracers in Environmental Studies: A Review. Sci. Total Environ. 2020, 736, 139585. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Shugart, L.R. Biological Markers of Environmental Contamination. In Biomarkers of Environmental Contamination; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Cajaraville, M.P.; Bebianno, M.J.; Blasco, J.; Porte, C.; Sarasquete, C.; Viarengo, A. The Use of Biomarkers to Assess the Impact of Pollution in Coastal Environments of the Iberian Peninsula: A Practical Approach. Sci. Total Environ. 2000, 247, 295–311. [Google Scholar] [CrossRef]
- Cano-Rocabayera, O.; Monroy, M.; Moncaleano-Niño, Á.M.; Gómez-Cubillos, M.C.; Ahrens, M.J. An Integrated Biomarker Approach: Non-Monotonic Responses to Cadmium Exposure in the Suckermouth Catfish Hypostomus Plecostomus. Aquat. Toxicol. 2022, 248, 106193. [Google Scholar] [CrossRef]
- Eroglu, A.; Dogan, Z.; Kanak, E.G.; Atli, G.; Canli, M. Effects of Heavy Metals (Cd, Cu, Cr, Pb, Zn) on Fish Glutathione Metabolism. Environ. Sci. Pollut. Res. 2015, 22, 3229–3237. [Google Scholar] [CrossRef]
- Abdel-Gawad, F.K.; Guerriero, G.; Khalil, W.K.B.; Abbas, H.H. Evaluation of Oxidative Stress, Genotoxicity and Gene Expression Alterations as Oil Pollution Markers in Solea vulgaris, from Suez Canal. Quantum Matter 2016, 5, 291–296. [Google Scholar] [CrossRef]
- Shariati, F.; Shariati, S. Review on Methods for Determination of Metallothioneins in Aquatic Organisms. Biol. Trace Elem. Res. 2011, 141, 340–366. [Google Scholar] [CrossRef] [PubMed]
- Venturino, A.; Rosenbaum, E.; De Castro, A.C.; Anguiano, O.L.; Gauna, L.; de Schroeder, T.F.; de D’Angelo, A.M.P. Biomarkers of Effect in Toads and Frogs. Biomarkers 2003, 8, 167–186. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Cadmium (Cd) concentration studies | Metal concentration in water or sediment studies |
Macaronesia region study area (the Azores, Canaries, Cape Verde, and Madeira) | Studies outside the Macaronesia region |
Coastal algae, invertebrates, and fish (sea-line to 200 m depth) | Deep-sea (more than 200 m depth), offshore, or non-coastal species without a link to the coast |
Offshore islets, shallow seamounts, and banks | Studies where the origin of samples is unknown (e.g., samples obtained in markets) |
Articles in English, Portuguese, or Spanish | Migratory species (e.g., mammals, turtles, pelagic sharks, dolphins, or seabirds) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, P.; Llopis, A.L.; Melo, C.S.; Rodrigues, A. Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source. J. Mar. Sci. Eng. 2023, 11, 100. https://doi.org/10.3390/jmse11010100
Torres P, Llopis AL, Melo CS, Rodrigues A. Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source. Journal of Marine Science and Engineering. 2023; 11(1):100. https://doi.org/10.3390/jmse11010100
Chicago/Turabian StyleTorres, Paulo, Ander Larrea Llopis, Carlos Sousa Melo, and Armindo Rodrigues. 2023. "Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source" Journal of Marine Science and Engineering 11, no. 1: 100. https://doi.org/10.3390/jmse11010100
APA StyleTorres, P., Llopis, A. L., Melo, C. S., & Rodrigues, A. (2023). Environmental Impact of Cadmium in a Volcanic Archipelago: Research Challenges Related to a Natural Pollution Source. Journal of Marine Science and Engineering, 11(1), 100. https://doi.org/10.3390/jmse11010100