Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water, Sediments, and B. maritimus Plant Collection
2.3. Sample Treatment (Water, Sediment, and Plants)
2.4. Trace Metal Analyses
2.5. Data Analyses
3. Results
3.1. Physicochemical Parameters
3.2. Concentrations of Trace Metals in Water and Sediment
3.3. Trace Metal Concentrations in B. maritimus Plants
3.4. Bioaccumulation Ability of B. maritimus
4. Discussion
4.1. Physicochemical Parameters
4.2. Trace Metal Concentrations in Water and Sediment
4.3. Trace Metal Concentrations in B. maritimus
4.4. Bioaccumulation Ability of B. maritimus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robbins, L.J.; Mänd, K.; Planavsky, N.J.; Alessi, D.S.; Konhauser, K.O. Trace metals. In Encyclopedia of Astrobiology; Gargaud, M., Irvine, W.M., Amils, R., Claeys, P., Cleaves, H.J., Gerin, M., Rouan, D., Spohn, T., Tirard, S., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Namieśnik, J.; Rabajczyk, A. The speciation and physicochemical forms of metals in surface waters and sediments. Chem. Spec. Bioavailab. 2010, 22, 1–24. [Google Scholar] [CrossRef]
- Malhadas, M.S.; Neves, R.J.; Leitão, P.C.; Silva, A. Influence of tide and waves on water renewal in Óbidos Lagoon, Portugal. Ocean. Dynam 2010, 60, 41–55. [Google Scholar] [CrossRef]
- Duarte, B.; Carreiras, J.; Caçador, I. Climate change impacts on salt marsh blue carbon, nitrogen and phosphorous stocks and ecosystem services. Appl. Sci. 2021, 11, 1969. [Google Scholar] [CrossRef]
- The Habitats Directive. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities 1992, 206, 50.
- Portuguese Decree of Law 149/2004, of 22 June 2004, approving a list of identification of sensitive areas and zones less sensitive, amending Directive 91/492/EC of the European Parliament and of the Council of 21 May 1991. Port. Repub. J. Gov. “Diário Da República” 2004, 145, 3380–3805.
- Council of the European Communities. Directive 2009/147/EEC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. Off. J. Eur. Communities 2010, 20, 7–25. [Google Scholar]
- Sousa, A.I.; Caçador, I.; Lillebø, A.I.; Pardal, M.A. Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites. Chemosphere 2008, 70, 850–857. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.-X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 2012, 421–422, 3–16. [Google Scholar] [CrossRef]
- Chapman, D. Water Quality Assessments—A Guide to Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; UNESCO/WHO/UNEP: Cambridge, UK, 1992. [Google Scholar]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.-J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Portuguese Decree of Law, no 103/2010, of 24 September, approving the environmental quality standards in the field of water policy and implementing Directive 2008/105/EC and in part Directive 2009/90/EC. Port. Repub. J. Gov. “Diário Da República” 2010, 187, 4289–4296.
- Portuguese Decree of Law 76/2016, of 31 May, approving the national plan for water. Port. Repub. J. Gov. “Diário Da República” 2016, 215, 3951–4007.
- El Mahrad, B.; Abalansa, S.; Newton, A.; Icely, J.D.; Snoussi, M.; Kacimi, I. Social-environmental analysis for the management of coastal lagoons in north Africa. Front. Environ. Sci. 2020, 8, 37. [Google Scholar] [CrossRef]
- D’Alpaos, C.; D’Alpaos, A. The valuation of ecosystem services in the Venice Lagoon: A multicriteria approach. Sustainability 2021, 13, 9485. [Google Scholar] [CrossRef]
- Rebelo, C.F.C.; Alves, C.P.F.; Moiteiro, G.C.; Ezequiel, G.M.G.; Brasão, I.P.C.; Vasconcelos, J.V.; Carvalho, M.J.P.J. Tourism through the gaze of stakeholders: The case of Óbidos Lagoon in Portugal. Tour. Plan. Dev. 2015, 12, 447–462. [Google Scholar] [CrossRef]
- Willaert, T.; García-Alegre, A.; Queiroga, H.; Cunha-e-Sá, M.A.; Lillebø, A.I. Measuring vulnerability of marine and coastal habitats’ potential to deliver ecosystem services: Complex Atlantic Region as case study. Front. Mar. Sci. 2019, 6, 2296–2774. [Google Scholar] [CrossRef]
- Silva, C.V.; Ortigão, M.; Willaert, T.; Rosa, R.; Nunes, L.C.; Cunha-e-Sá, M.A. Participatory Geographic Information Systems (PGIS): Alternative approaches to identify potential conflicts and positional accuracy in marine and coastal ecosystem services. Mar. Pol. 2021, 131, 104650. [Google Scholar] [CrossRef]
- Malhadas, M.S.; Nunes, S.A.; Neves, R.; Carvalho, S.M.; Couto, C.F.; Zenha, H.S. Impact of Casalito wastewater treatment plant discharge on Óbidos Lagoon water quality. In Proceedings of the 11th Conference on Environmental Science and Technology, Chania, Greece, 3–5 September 2009. [Google Scholar]
- Carvalho, S.; Gaspar, M.B.; Moura, A.; Vale, C.; Antunes, P.; Gil, O.; da Fonseca, L.C.; Falcão, M. The use of the marine biotic index AMBI in the assessment of the ecological status of the Óbidos lagoon (Portugal). Mar. Pollut. Bull. 2006, 52, 1414–1424. [Google Scholar] [CrossRef]
- Pereira, P.; de Pablo, H.; Vale, C.; Rosa-Santos, F.; Cesário, R. Metal and nutrient dynamics in a eutrophic coastal lagoon (Óbidos, Portugal): The importance of observations at different time scales. Environ. Monit. Assess. 2009, 158, 405–418. [Google Scholar] [CrossRef]
- Pereira, P.; de Pablo, H.; Vale, C.; Franco, V.; Nogueira, M. Spatial and seasonal variation of water quality in an impacted coastal lagoon (Óbidos Lagoon, Portugal). Environ. Monit. Assess. 2009, 153, 281–292. [Google Scholar] [CrossRef]
- Pereira, P.; de Pablo, H.; Dulce Subida, M.; Vale, C.; Pacheco, M. Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Óbidos lagoon, Portugal). Ecotox Environ. Safe 2009, 72, 1471–1480. [Google Scholar] [CrossRef]
- O’Leary, J.W.; Glenn, E.P. Global distribution and potential for halophytes. In Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands. Tasks for Vegetation Science Book Series; Squires, V.R., Ayoub, A.T., Eds.; Springer: Dordrecht, The Netherlands, 1994; Volume 32. [Google Scholar]
- Almeida, C.M.R.; Mucha, A.P.; Vasconcelos, M.T.S.D. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ. Pollut. 2006, 142, 151–159. [Google Scholar] [CrossRef]
- Bragato, C.; Brix, H.; Malagoli, M. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex. Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice Lagoon watershed. Environ. Pollut. 2006, 144, 967–975. [Google Scholar] [CrossRef]
- Madejón, P.; Murillo, J.M.; Marañón, T.; Espinar, J.L.; Cabrera, F. Accumulation of As, Cd and selected trace elements in tubers of Scirpus maritimus L. from Doñana marshes (South Spain). Chemosphere 2006, 64, 742–748. [Google Scholar] [CrossRef]
- Pedro, C.A.; Santos, M.S.S.; Ferreira, S.M.F.; Gonçalves, S.C. The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar. Environ. Res. 2013, 92, 197–205. [Google Scholar] [CrossRef]
- Pérez-Romero, J.A.; Redondo-Gómez, S.; Mateos-Naranjo, E. Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiol. Biochem. 2016, 109, 103–113. [Google Scholar] [CrossRef]
- Milić, D.; Bubanja, N.; Ninkov, J.; Milić, S.; Vasin, J.; Luković, J. Phytoremediation potential of the naturally occurring wetland species in protected Long Beach in Ulcinj, Montenegro. Sci. Total Environ. 2021, 797, 148995. [Google Scholar] [CrossRef]
- Couto, C.M.C.M.; Ribeiro, C. Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: A trend analysis from the 80s to 2021. Environ. Sci. Pollut. Res. 2022, 29, 48057–48087. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chen, F.A.; Hsu, M.J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ. Pollut. 2008, 155, 320–326. [Google Scholar] [CrossRef]
- Shuping, L.S. Biomonitoring of Metal Contamination in the Lower Diep River, Milnerton, Western Cape. Master’s Thesis, Cape Peninsula University of Technology, Cape Town, South Africa, 2008. [Google Scholar]
- Marques, B.; Lillebø, A.I.; Pereira, E.; Duarte, A.C. Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus. Environ. Pollut. 2011, 159, 1869–1876. [Google Scholar] [CrossRef]
- Hroudová, Z.; Zákravský, P.; Flegrová., M. The tolerance to salinity and nutrient supply in four European Bolboschoenus species (B. maritimus, B. laticarpus, B. planiculmis and B. yagara) affects their vulnerability or expansiveness. Aquat. Bot. 2014, 112, 66–75. [Google Scholar]
- Lillebø, A.I.; Pardal, M.A.; Neto, J.M.; Marques, J.C. Salinity as the major factor affecting Scirpus maritimus annual dynamics: Evidence from field data and greenhouse experiment. Aquat. Bot. 2003, 77, 111–120. [Google Scholar] [CrossRef]
- Oliveira, A.; Fortunato, A.B.; Rego, J.R.L. Effect of morphological changes on the hydrodynamics and flushing properties of the Óbidos Lagoon (Portugal). Cont. Shelf Res. 2006, 26, 917–942. [Google Scholar] [CrossRef]
- Pedro, C.A.; Santos, M.S.S.; Ferreira, S.M.F.; Gonçalves, S.C. The presence of cadmium in the intertidal environments of a moderately impacted coastal lagoon in western Portugal (Óbidos Lagoon): Spatial and seasonal evaluations. Environ. Sci. Pollut. R. 2016, 23, 1960–1969. [Google Scholar] [CrossRef]
- Sharma, A.; Gontia, I.; Agarwal, P.K.; Jha, B. Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar. Biol. Res. 2010, 6, 511–518. [Google Scholar] [CrossRef]
- Barzev, A.; Dobreva, D.; Futekov, L.; Rusev, V.; Bekjarov, G.; Toneva, G. Determination of detection limits in graphite furnace atomic absorption spectrometry by using ensemble summation of signals. Fresenius Z. Anal. Chem. 1986, 325, 255–257. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its byproducts. Asian J. Energy Environ. 2005, 6, 214–231. [Google Scholar]
- Cheraghi, M.; Lorestani, B.; Yousefi, N. Introduction of hyperaccumulator plants with phytoremediation potential of a lead- zinc mine in Iran. Int. J. Geol. Environ. Eng. 2011, 5, 289–294. [Google Scholar]
- Crivelli, A.J.; Ximenes, M.-C.; Gout, B.; Lassere, G.; Freon, P.; Do Chi, T. Causes and effects of terrestrial runoff and riverine outflow on brackish/coastal marine fisheries ecosystems in the northern Mediterranean region. FAO Fish. Tech. Pap. 1995, 349, 59–88. [Google Scholar]
- Santos, M.S.S.; Pedro, C.A.; Gonçalves, S.C.; Ferreira, S.M.F. Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities. Environ. Sci. Pollut. Res. 2015, 22, 15598–15609. [Google Scholar] [CrossRef]
- Decree Law n.º 236/98, 1 de Agosto, Diário da República n.º 176/1998, Série I-A de 1998-08-01; pp. 3676–3722. Available online: https://diariodarepublica.pt/dr/detalhe/decreto-lei/236-1998-430457 (accessed on 1 June 2023).
- Pradit, S.; Pattarathomrong, M.S.; Panutrakul, S. Arsenic, cadmium and lead concentrations in sediment and biota from Songkhla Lake: A review. Procedia—Social. Behav. Sci. 2013, 91, 573–580. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No 466/2001 of 8 March 2001 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). Off. J. L 2001, 42, 16–22. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2001R0466:20060701:EN:PDF (accessed on 1 June 2023).
- Davis, W.J. Contamination of coastal versus open ocean surface waters: A brief meta-analysis. Mar. Pollut. Bull. 1993, 26, 128–134. [Google Scholar] [CrossRef]
- Angel, B.M.; Apte, S.C.; Batley, G.E.; Raven, M.D. Lead solubility in seawater: An experimental study. Environ. Chem. 2015, 13, 489–495. [Google Scholar] [CrossRef]
- Von Burg, R. Nickel and some nickel compounds. J. Appl. Toxicol. 1997, 17, 425–431. [Google Scholar] [CrossRef]
- Mazej, Z.; Germ, M. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 2009, 74, 642–647. [Google Scholar] [CrossRef]
- Bonanno, G.; Borgb, J.A.; Di Martino, V. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Sci. Total Environ. 2017, 576, 796–806. [Google Scholar] [CrossRef]
- Ross, S.M.; Kaye, K.J. The meaning of metal toxicity in soil and plant system. In Toxic Metals in Soil and Plant System; Ross, S.M., Ed.; John Wiley & Sons: New York, NY, USA, 1994; pp. 27–61. [Google Scholar]
- Santos, M.S.S. Phytoremediation of Cadmium at Different Salinities by Scirpus maritimus from the Óbidos Lagoon (Portugal). Master’s Thesis, School of Tourism and Maritime Technology, Olytechnic Institute of Leiria, Peniche, Portugal, 2011. [Google Scholar]
- Ozawa, T.; Miura, M.; Fukuda, M.; Kakuta, S. Cadmium tolerance and accumulation in a halophyte Salicornia europaea as a new candidate for phytoremediation of saline soils. Sci. Rep. Grad. Sch. Life Environ. Sci. Osaka Prefect. Univ. 2009, 60, 1–8. [Google Scholar]
- Sintorini, M.M.; Widyatmoko, H.; Sinaga, E.; Aliyah, N. Effect of pH on metal mobility in the soil. In Proceedings of the 5th International Seminar on Sustainable Urban Development, Jakarta, Indonesia, 5 August 2020; Volume 737. IOP Conference Series: Earth and Environmental Science. [Google Scholar]
- Shuping, L.S.; Snyman, R.G.; Odendaal, J.P.; Ndakidemi, P.A. Accumulation and distribution of metals in Bolboschoenus maritimus (Cyperaceae), from a south African river. Water Air Soil. Pollut. 2011, 216, 319–328. [Google Scholar] [CrossRef]
- Bidar, G.; Pruvot, C.; Garçon, G.; Verdin, A.; Shirali, P.; Douay, F. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ. Sci. Pollut. Res. 2009, 16, 42–53. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Hamzah, A.; Sarmani, S.B.; Yatim, N.I. Phytoremediation of Pb and Hg by using Scirpus mucronatus with addition of bacterial inoculums. J. Radioanal. Nucl. Chem. 2015, 304, 151–155. [Google Scholar] [CrossRef]
- Carranza-Álvarez, C.; Alonso-Castro, A.; Alfaro-De La Torre, M.C.; García-De La Cruz, R.F. Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil. Poll. 2008, 188, 297–309. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus. IJP 2013, 15, 814–826. [Google Scholar]
- Markert, B.A.; Breure, A.M.; Zechmeister, H.G. (Eds.) Bioindicators and Biomonitors—Principles, Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 2003; pp. 3–21. [Google Scholar]
Station S1 | Environmental Parameters | |||
---|---|---|---|---|
Season/Year | Temperature (°C) | pH | Salinity | Dissolved Oxygen (%) |
Spring/2009 | 18.37 ± 1.46 | 8.46 ± 0.24 | 16.29 ± 10.31 | 64.21 ± 10.62 |
Summer/2009 | 26.20 ± 1.01 | 8.56 ± 0.03 | 31.16 ± 0.43 | 91.52 ± 11.48 |
Autumn/2009 | 21.42 ± 0.00 | 8.73 ± 0.00 | 30.03 ± 0.00 | 84.8 ± 0.00 |
Winter/2010 | 12.97 ± 2.12 | 8.22 ± 0.28 | 1.29 ± 1.15 | 77.88 ± 12.38 |
Spring/2010 | 18.29 ± 4.41 | 7.95 ± 0.22 | 1.20 ± 0.73 | 64.74 ± 27.24 |
Summer/2010 | 20.27 ± 0.96 | 8.43 ± 0.09 | 5.99 ± 3.88 | 94.19 ± 4.48 |
Pearson Correlation | Cd Water (susp frac) | Cd Sediments | Pb Water (dissol frac) | Pb Water (susp frac) | Pb Sediment | Ni Water (Dissol frac) |
---|---|---|---|---|---|---|
Cd water (susp frac) | 1 | |||||
Cd sediments | −0.417 | 1 | ||||
Pb water (dissol frac) | −0.310 | 0.669 | 1 | |||
Pb water (susp frac) | 0.481 | 0.062 | −0.552 | 1 | ||
Pb sediments | −0.482 | 0.191 | −0.232 | −0.157 | 1 | |
Ni water (dissol frac) | −0.152 | 0.694 | 0.880 | 0.478 | −0.045 | 1 |
Pearson Correlation | Cd Water (susp frac) | Cd Sediments | Cd Underground Organs | Cd Stems | Cd Leaves | Cd Whole Plants | ||
---|---|---|---|---|---|---|---|---|
Cd water (susp frac) | 1 | |||||||
Cd sediments | −0.417 | 1 | ||||||
Cd underground organs | 0.877 | −0.227 | 1 | |||||
Cd stems | −0.317 | 0.987 | −0.196 | 1 | ||||
Cd leaves | −0.451 | 0.413 | −0.317 | 0.460 | 1 | |||
Cd whole plants | −0.196 | 0.461 | −0.006 | 0.519 | 0.944 | 1 | ||
Pearson correlation | Pb water (dissol frac) | Pb water (susp frac) | Pb sediments | Pb underground organs | Pb stems | Pb leaves | Pb whole plants | |
Pb water (dissol frac) | 1 | |||||||
Pb water (susp frac) | −0.552 | 1 | ||||||
Pb sediments | −0.232 | −0.157 | 1 | |||||
Pb underground organs | −0.607 | 0.587 | −0.383 | 1 | ||||
Pb stems | −0.329 | 0.258 | −0.566 | 0.137 | 1 | |||
Pb leaves | −0.281 | 0.827 | 0.484 | 0.195 | 0.152 | 1 | ||
Pb whole plants | −0.584 | 0.555 | −0.617 | 0.663 | 0.825 | 0.328 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.S.S.; Pedro, C.A.; Ferreira, S.M.F.; Gonçalves, S.C. Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal). J. Mar. Sci. Eng. 2023, 11, 1826. https://doi.org/10.3390/jmse11091826
Santos MSS, Pedro CA, Ferreira SMF, Gonçalves SC. Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal). Journal of Marine Science and Engineering. 2023; 11(9):1826. https://doi.org/10.3390/jmse11091826
Chicago/Turabian StyleSantos, Márcia S. S., Carmen A. Pedro, Susana M. F. Ferreira, and Sílvia C. Gonçalves. 2023. "Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal)" Journal of Marine Science and Engineering 11, no. 9: 1826. https://doi.org/10.3390/jmse11091826
APA StyleSantos, M. S. S., Pedro, C. A., Ferreira, S. M. F., & Gonçalves, S. C. (2023). Is the Plant Bolboschoenus maritimus an Adequate Biomonitor for Trace Metal Contamination in Saltmarshes? A Field Study from the Óbidos Lagoon (Portugal). Journal of Marine Science and Engineering, 11(9), 1826. https://doi.org/10.3390/jmse11091826