Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physico-Chemical Parameters and Total/Dissolved TMs
2.2. DGT Deployment and Analyses
3. Results and Discussion
3.1. Physico-Chemical Parameters
3.2. Spatio-Temporal Distribution of TMs
3.3. Inter-Annual and Daily Variations and Potentially Bioavailable Fractions of TMs
3.4. Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fichet, D.; Radenac, G.; Miramand, P. Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: Bioavailability of Cd, Cu, Pb and Zn and toxicity. Mar. Pollut. Bull. 1998, 36, 509–518. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, C.Y.; Gaulier, C.; Bratkic, A.; Galceran, J.; Puy, J.; Zhang, H.; Leermakers, M.; Baeyens, W. Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. Trac.-Trend Anal. Chem. 2019, 116, 92–101. [Google Scholar] [CrossRef]
- Mason, R. Trace metal(oid)s in marine waters. In Trace Metals in Aquatic Systems; Mason, R., Ed.; A John Wiley & Sons: Chichester, UK, 2013; pp. 219–309. [Google Scholar]
- Egleston, E.S.; Morel, F.M.M. Nickel limitation and zinc toxicity in a urea-grown diatom. Limnol. Oceanogr. 2008, 53, 2462–2471. [Google Scholar] [CrossRef]
- Chiarelli, R.; Martino, C.; Roccheri, M.C. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019, 24, 675–687. [Google Scholar] [CrossRef]
- Echeveste, P.; Agusti, S.; Tovar-Sanchez, A. Toxic thresholds of cadmium and lead to oceanic phytoplankton: Cell size and ocean basin-dependent effects. Environ. Toxicol. Chem. 2012, 31, 1887–1894. [Google Scholar] [CrossRef]
- Karlsson, J.; Ytreberg, E.; Eklund, B. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ. Pollut. 2010, 158, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Ytreberg, E.; Karlsson, J.; Eklund, B. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ. 2010, 408, 2459–2466. [Google Scholar] [CrossRef]
- Blewett, T.A.; Leonard, E.M. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. Environ. Pollut. 2017, 223, 311–322. [Google Scholar] [CrossRef]
- Saili, K.S.; Cardwell, A.S.; Stubblefield, W.A. Chronic Toxicity of Cobalt to Marine Organisms: Application of a Species Sensitivity Distribution Approach to Develop International Water Quality Standards. Environ. Toxicol. Chem. 2021, 40, 1405–1418. [Google Scholar] [CrossRef]
- Long, E.R.; Robertson, A.; Wolfe, D.A.; Hameedi, J.; Sloane, G.M. Estimates of the Spatial Extent of Sediment Toxicity in Major U.S. Estuaries. Environ. Sci. Technol. 1996, 30, 3585–3592. [Google Scholar] [CrossRef]
- Bruland, K.W.; Lohan, M.C. Controls of Trace Metals in Seawater. In Treatise on Geochemistry; Elderfield, H., Ed.; The Oceans and Marine Geochemistry; Elsevier: Oxford, UK, 2003; Volume 6, pp. 23–47. [Google Scholar]
- Cuculić, V.; Cukrov, N.; Kwokal, Ž.; Mlakar, M. Natural and anthropogenic sources of Hg, Cd, Pb, Cu and Zn in seawater and sediment of Mljet National Park, Croatia. Estuar. Coast. Shelf Sci. 2009, 81, 311–320. [Google Scholar] [CrossRef]
- Neff, J.M. Zinc in the Ocean. In Bioaccumulation in Marine Organisms; Neff, J.M., Ed.; Elsevier: Oxford, UK, 2002; pp. 175–189. [Google Scholar]
- Neff, J.M. Cadmium in the Ocean. In Bioaccumulation in Marine Organisms; Neff, J.M., Ed.; Elsevier: Oxford, UK, 2002; pp. 89–102. [Google Scholar]
- Hirose, K. Chemical speciation of trace metals in seawater: A review. Anal. Sci. 2006, 22, 1055–1063. [Google Scholar] [CrossRef]
- Amouroux, I.; Gonzalez, J.L.; Guesdon, S.; Belzunce-Segarra, M.J.; Bersuder, P.; Bolam, T.; Caetano, M.; Dos Santos, M.C.; Larreta, J.; Lebrun, L.; et al. A new approach to using Diffusive Gradient in Thin-films (DGT) labile concentration for Water Framework Directive chemical status assessment: Adaptation of Environmental Quality Standard to DGT for cadmium, nickel and lead. Environ. Sci. Eur. 2023, 35, 29. [Google Scholar] [CrossRef]
- Unsworth, E.R.; Warnken, K.W.; Zhang, H.; Davison, W.; Black, F.; Buffle, J.; Cao, J.; Cleven, R.; Galceran, J.; Gunkel, P.; et al. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942–1949. [Google Scholar] [CrossRef]
- Davison, W.; Zhang, H. Progress in understanding the use of diffusive gradients in thin films (DGT)—Back to basics. Environ. Chem. 2012, 9, 1–13. [Google Scholar] [CrossRef]
- Amato, E.D.; Simpson, S.L.; Jarolimek, C.V.; Jolley, D.F. Diffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments. Environ. Sci. Technol. 2014, 48, 4485–4494. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.; Beiras, R. Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas. Sci. Total Environ. 2013, 463–464, 446–453. [Google Scholar] [CrossRef]
- Di Cesare, A.; Pjevac, P.; Eckert, E.; Curkov, N.; Miko Sparica, M.; Corno, G.; Orlic, S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ. Polluttion 2020, 265, 114823. [Google Scholar] [CrossRef]
- Cindrić, A.M.; Garnier, C.; Oursel, B.; Pižeta, I.; Omanović, D. Evidencing the natural and anthropogenic processes controlling trace metals dynamic in a highly stratified estuary: The Krka River estuary (Adriatic, Croatia). Mar. Pollut. Bull. 2015, 94, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Cindrić, A.-M.; Cukrov, N.; Durrieu, G.; Garnier, C.; Pižeta, I.; Omanović, D. Evaluation of Discrete and Passive Sampling (Diffusive Gradients in Thin-films—DGT) Approach for the Assessment of Trace Metal Dynamics in Marine Waters—A Case Study in a Small Harbor. Croat. Chem. Acta 2017, 90, 177–185. [Google Scholar] [CrossRef]
- Ciglenečki, I.; Vilibić, I.; Dautović, J.; Vojvodić, V.; Ćosović, B.; Zemunik, P.; Dunić, N.; Mihanović, H. Dissolved organic carbon and surface active substances in the northern Adriatic Sea: Long-term trends, variability and drivers. Sci. Total Environ. 2020, 730, 139104. [Google Scholar] [CrossRef]
- Penezić, A.; Gašparović, B.; Cuculić, V.; Strmečki, S.; Djakovac, T.; Mlakar, M. Dissolved Trace Metals and Organic Matter Distribution in the Northern Adriatic, an Increasingly Oligotrophic Shallow Sea. Water-Sui 2022, 14, 349. [Google Scholar] [CrossRef]
- Zago, C.; Capodaglio, G.; Barbante, C.; Giani, M.; Moret, I.; Scarponi, G.; Cescon, P. Heavy Metal Distribution and Speciation in the Northern Adriatic Sea. Chem. Ecol. 2002, 18, 39–51. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Tercier-Waeber, M.L.; Nöel, S.; Braungardt, C.B.; Achterberg, E.P.; Howell, K.A.; Turner, D.; Marini, M.; et al. In-situ trace metal (Cd, Pb, Cu) speciation along the Po River plume (Northern Adriatic Sea) using submersible systems. Mar. Chem. 2019, 212, 47–63. [Google Scholar] [CrossRef]
- Rossi, N.; Jamet, J.L. In situ heavy metals (copper, lead and cadmium) in different plankton compartments and suspended particulate matter in two coupled Mediterranean coastal ecosystems (Toulon Bay, France). Mar. Pollut. Bull. 2008, 56, 1862–1870. [Google Scholar] [CrossRef]
- Perez-Cid, B.; Falque, E.; Simal-Gandara, J. Coastline Levels of Dissolved Heavy Metals in the Estuarine Water-System of Vigo. Int. J. Environ. Res. Public Health 2021, 18, 2136. [Google Scholar] [CrossRef]
- Cindrić, A.M.; Marcinek, S.; Garnier, C.; Salaun, P.; Cukrov, N.; Oursel, B.; Lenoble, V.; Omanović, D. Evaluation of diffusive gradients in thin films (DGT) technique for speciation of trace metals in estuarine waters—A multimethodological approach. Sci. Total Environ. 2020, 721, 137784. [Google Scholar] [CrossRef] [PubMed]
- Marcinek, S.; Cindric, A.M.; Padan, J.; Omanovic, D. Trace Metal Partitioning in the Salinity Gradient of the Highly Stratified Estuary: A Case Study in the Krka River Estuary (Croatia). Appl. Sci. 2022, 12, 5816. [Google Scholar] [CrossRef]
- Government of Republic of Croatia. Uredba o Standardu Kakvoće Voda. NN 2023, 96/19, 20/23, 50/23. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2023_02_20_341.html (accessed on 29 January 2024).
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y.; Li, G. Water quality assessment based on Nemerow pollution index method: A case study of Heilongtan reservoir in central Sichuan province, China. PLoS ONE 2022, 17, e0273305. [Google Scholar] [CrossRef] [PubMed]
- WFD-2013/39/EU; Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. European Parliament: Strasbourg, France, 2013.
- ANZEEC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Available online: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/search (accessed on 15 January 2024).
- USEPA. National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 15 January 2024).
Zn (ug/L) | Cd (μg/L) | Pb (μg/L) | Cu (μg/L) | Ni (μg/L) | Co (μg/L) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | ||
Pula Bay–Ref. site | 0.147 | 0.565 | 0.007 | 0.011 | 0.012 | 0.059 | 0.240 | 0.380 | 0.334 | 0.470 | 0.014 | 0.033 | This study |
Pula Bay–Surface | 0.235 | 3.183 | 0.007 | 0.016 | 0.012 | 0.408 | 0.243 | 1.736 | 0.308 | 0.528 | 0.012 | 0.033 | This study |
Pula Bay–Bottom | 0.147 | 2.382 | 0.006 | 0.020 | 0.014 | 0.529 | 0.240 | 1.413 | 0.343 | 0.529 | 0.012 | 0.033 | This study |
Šibenik Bay | 0.464 | 6.604 | 0.006 | 0.023 | 0.008 | 0.230 | 0.408 | 4.365 | 0.300 | 0.628 | 0.015 | 0.030 | [23] |
N. Adriatic, 108 | 0.327 | 7.585 | 0.004 | 0.020 | 0.010 | 0.131 | 0.191 | 1.080 | 0.235 | 0.646 | 0.012 | 0.071 | [26] |
N. Adriatic, 107 | 0.392 | 14.647 | 0.003 | 0.018 | 0.010 | 0.259 | 0.191 | 1.080 | 0.235 | 1.115 | 0.006 | 0.041 | [26] |
North Adriatic | 0.203 | 2.256 | 0.131 | 0.726 | 0.004 | 0.097 | [27] | ||||||
River Po plume | 0.008 | 0.028 | 0.019 | 0.083 | 0.127 | 0.699 | [28] |
EF Dissolved TM | EF Total TM | |||
---|---|---|---|---|
Surface | Bottom | Surface | Bottom | |
Zn | 4.3 (2.0) | 5.7 (3.1) | 6.1 (2.2) | 5.1 (2.2) |
Cd | 1.2 (0.4) | 1.3 (0.5) | 1.3 (0.6) | 1.4 (0.6) |
Pb | 8.5 (5.2) | 9.0 (6.1) | 10.0 (7.7) | 7.7 (6.9) |
Cu | 3.2 (1.3) | 2.8 (0.9) | 3.7 (1.8) | 3.8 (1.7) |
Ni | 1.1 (0.2) | 1.0 (0.1) | 1.1 (0.2) | 1.1 (0.2) |
Co | 1.1 (0.5) | 1.1 (0.5) | 1.2 (0.6) | 1.2 (0.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grozdanić, O.; Cindrić, A.-M.; Finderle, I.; Omanović, D. Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia. J. Mar. Sci. Eng. 2024, 12, 440. https://doi.org/10.3390/jmse12030440
Grozdanić O, Cindrić A-M, Finderle I, Omanović D. Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia. Journal of Marine Science and Engineering. 2024; 12(3):440. https://doi.org/10.3390/jmse12030440
Chicago/Turabian StyleGrozdanić, Ozren, Ana-Marija Cindrić, Iva Finderle, and Dario Omanović. 2024. "Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia" Journal of Marine Science and Engineering 12, no. 3: 440. https://doi.org/10.3390/jmse12030440
APA StyleGrozdanić, O., Cindrić, A. -M., Finderle, I., & Omanović, D. (2024). Examining the Impact of Long-Term Industrialization on the Trace Metal Contaminants Distribution in Seawater of the Pula Bay, Croatia. Journal of Marine Science and Engineering, 12(3), 440. https://doi.org/10.3390/jmse12030440