Moderate Anthropogenic Noise Exposure Does Not Affect Navy Bottlenose Dolphin (Tursiops truncatus) Whistle Rates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Au, W.W.L. Characteristics of dolphin sonar signals. In The Sonar of Dolphins; Springer: New York, NY, USA, 1993; pp. 115–139. [Google Scholar] [CrossRef]
- Au, W.W.L. Echolocation in dolphins. In Hearing by Whales and Dolphins; Au, W.W.L., Fay, R.R., Popper, A.N., Eds.; Springer Science & Business Media: New York, NY, USA, 2000; pp. 364–408. [Google Scholar] [CrossRef]
- Schevill, W.E.; Lawrence, B. Food-finding by a captive porpoise (Tursiops truncatus). Breviora 1956, 53, 1–14. [Google Scholar]
- Schevill, W.E.; McBride, A.F. Evidence for echolocation by cetaceans. Deep. Sea Res. 1956, 3, 153–154. [Google Scholar] [CrossRef]
- Lilly, J.C.; Miller, A.M. Sounds emitted by the bottlenose dolphin: The audible emissions of captive dolphins under water or in air are remarkably complex and varied. Science 1961, 133, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.C.; Caldwell, D.K. Individualized whistle contours in bottlenosed dolphins (Tursiops truncatus). Nature 1965, 207, 434–435. [Google Scholar] [CrossRef]
- Jones, B.; Zapetis, M.; Samuelson, M.M.; Ridgway, S. Sounds produced by bottlenose dolphins (Tursiops): A review of the defining characteristics and acoustic criteria of the dolphin vocal repertoire. Bioacoustics 2019, 29, 399–440. [Google Scholar] [CrossRef]
- Au, W.W.L.; Floyd, R.W.; Penner, R.H.; Murchison, A.E. Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. J. Acoust. Soc. Am. 1974, 56, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Finneran, J.J.; Branstetter, B.K.; Houser, D.S.; Moore, P.W.; Mulsow, J.; Martin, C.; Perisho, S. High-resolution measurement of a bottlenose dolphin’s (Tursiops truncatus) biosonar transmission beam pattern in the horizontal plane. J. Acoust. Soc. Am. 2014, 136, 2025–2038. [Google Scholar] [CrossRef] [PubMed]
- Hiley, H.M.; Perry, S.; Hartley, S.; King, S.L. What’s occurring? Ultrasonic signature whistle use in Welsh bottlenose dolphins (Tursiops truncatus). Bioacoustics 2017, 26, 25–35. [Google Scholar] [CrossRef]
- Kaplan, J.D.; Reiss, D. Whistle acoustic parameters in Atlantic spotted dolphins (Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) in two locations in the Bahamas and comparisons with other populations. Aquat. Mamm. 2017, 43, 364–377. [Google Scholar] [CrossRef]
- Frankel, A.S.; Zeddies, D.; Simard, P.; Mann, D. Whistle source levels of free-ranging bottlenose dolphins and Atlantic spotted dolphins in the Gulf of Mexico. J. Acoust. Soc. Am. 2014, 135, 1624–1631. [Google Scholar] [CrossRef]
- Janik, V.M. Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth, Scotland. J. Comp. Physiol. A 2000, 186, 673–680. [Google Scholar] [CrossRef]
- Jensen, F.H.; Beedholm, K.; Wahlberg, M.; Bejder, L.; Madsen, P.T. Estimated communication range and energetic cost of bottlenose dolphin whistles in a tropical habitat. J. Acoust. Soc. Am. 2012, 131, 582–592. [Google Scholar] [CrossRef]
- Madsen, P.T.; Jensen, F.H.; Carder, D.; Ridgway, S. Dolphin whistles: A functional misnomer revealed by heliox breathing. Biol. Lett. 2011, 8, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Janik, V.M.; Slater, P.J.B. Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls. Anim. Behav. 1998, 56, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.L.; Daniels, R.; Tufano, S.; Ridgway, S. Five members of a mixed-sex group of bottlenose dolphins share a stereotyped whistle contour in addition to maintaining their individually distinctive signature whistles. PLoS ONE 2020, 15, e0233658. [Google Scholar] [CrossRef] [PubMed]
- Watwood, S.L.; Owen, E.C.G.; Tyack, P.L.; Wells, R.S. Signature whistle use by temporarily restrained and free-swimming bottlenose dolphins, Tursiops truncatus. Anim. Behav. 2005, 69, 1373–1386. [Google Scholar] [CrossRef]
- Caldwell, M.C.; Caldwell, D.K. Intraspecific transfer of information via the pulsed sound in captive odontocete cetaceans. In Animal Sonar Systems: Biology and Bionics; Busnel, R.G., Ed.; Laboratoire de Physiologie Acoustic: Jouy-en-Josas, France, 1967; pp. 879–936. [Google Scholar]
- Caldwell, M.C.; Caldwell, D.K.; Tyack, P.L. Review of the signature-whistle hypothesis for the Atlantic bottlenose dolphin. In The Bottlenose Dolphin; Leatherwood, S., Reeves, R.R., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 199–234. [Google Scholar]
- Lilly, J.C. Distress call of the bottlenose dolphin: Stimuli and evoked behavioral responses. Science 1963, 139, 116–118. [Google Scholar] [CrossRef]
- Caldwell, M.C.; Caldwell, D.K. The whistle of the Atlantic bottlenosed dolphin (Tursiops truncatus)—Ontogeny. In Behavior of Marine Animals; Winn, H.E., Olla, B.L., Eds.; Springer: St. Augustine, FL, USA, 1979; Volume 3, Cetaceans; pp. 369–401. [Google Scholar] [CrossRef]
- Esch, H.C.; Sayigh, L.S.; Blum, J.E.; Wells, R.S. Whistles as potential indicators of stress in bottlenose dolphins (Tursiops truncatus). J. Mammal. 2009, 90, 638–650. [Google Scholar] [CrossRef]
- Kuczaj, S.A.; Frick, E.E.; Jones, B.L.; Lea, J.S.E.; Beecham, D.; Schnöller, F. Underwater observations of dolphin reactions to a distressed conspecific. Learn. Behav. 2015, 43, 289–300. [Google Scholar] [CrossRef]
- Bruck, J.N. Decades-long social memory in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131726. [Google Scholar] [CrossRef]
- Nowacek, D.P. Acoustic ecology of foraging bottlenose dolphins (Tursiops truncatus), habitat-specific use of three sound types. Mar. Mammal Sci. 2005, 21, 587–602. [Google Scholar] [CrossRef]
- Sayigh, L.S.; Tyack, P.L.; Wells, R.S.; Scott, M.D.; Irvine, A.B. Sex difference in signature whistle production of free-ranging bottlenose dolphins, Tursiops truncatus. Behav. Ecol. Sociobiol. 1995, 36, 171–177. [Google Scholar] [CrossRef]
- David, J.A. Likely sensitivity of bottlenose dolphins to pile-driving noise. Water Environ. J. 2006, 20, 48–54. [Google Scholar] [CrossRef]
- Finneran, J.J.; Jenkins, A.K. Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis; SSC Pacific: San Diego, CA, USA, 2012; pp. 1–65.
- Southall, B.L. Final Report of the National Oceanic Atmospheric Administration (NOAA) International Symposium: Shipping Noise and Marine Mammals: A Forum for Science, Management, and Technology; NOAA Fisheries Acoustics Program: Arlington, Virginia, 2005; pp. 13–16.
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 39, 5–20. [Google Scholar] [CrossRef]
- Guan, S.; Brookens, T. The use of psychoacoustics in marine mammal conservation in the United States: From science to management and policy. J. Mar. Sci. Eng. 2021, 9, 507. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. The Marine Mammal Protection Act of 1972; U.S. Fish and Wildlife Service: Washington, DC, USA, 1972; p. 6.
- Blackwell, S.B.; Nations, C.S.; McDonald, T.L.; Greene, C.R.; Thode, A.M.; Guerra, M.; Macrander, A.M. Effects of airgun sounds on bowhead whale calling rates in the Alaskan Beaufort Sea. Mar. Mammal Sci. 2013, 29, E342–E365. [Google Scholar] [CrossRef]
- Miller, P.J.O.; Kvadsheim, P.H.; Lam, F.-P.A.; Wensveen, P.J.; Antunes, R.; Alves, A.C.; Visser, F.; Kleivane, L.; Tyack, P.L.; Sivle, L.D. The severity of behavioral changes observed during experimental exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas), and sperm (Physeter macrocephalus) whales to Naval sonar. Aquat. Mamm. 2012, 38, 362–401. [Google Scholar] [CrossRef]
- Ridgway, S.H.; Carder, D.A.; Smith, R.R.; Kamolnick, T.; Schlundt, C.E.; Elsberry, W.R. Behavioral Responses and Temporary Shift in Masked Hearing Threshold of Bottlenose Dolphins, Tursiops trancatus, to 1-Second Tones of 141 to 201 dB re 1 Micro PA; Naval Commands, Control and Ocean Surveillance Center RDT&E Division: San Diego, CA, USA, 1997; pp. 1–16. [Google Scholar]
- Wensveen, P.J.; Isojunno, S.; Hansen, R.R.; von Benda-Beckmann, A.M.; Kleivane, L.; van IJsselmuide, S.; Lam, F.-P.A.; Kvadsheim, P.H.; DeRuiter, S.L.; Curé, C.; et al. Northern bottlenose whales in a pristine environment respond strongly to close and distant Navy sonar signals. Proc. R. Soc. B 2019, 286, 20182592. [Google Scholar] [CrossRef]
- Nowacek, D.P.; Johnson, M.P.; Tyack, P.L. North Atlantic right whales (Eubalaena glacialis) ignore ships but respond to alerting stimuli. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 271, 227–231. [Google Scholar] [CrossRef]
- Antunes, R.; Kvadsheim, P.H.; Lam, F.P.A.; Tyack, P.L.; Thomas, L.; Wensveen, P.J.; Miller, P.J.O. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas). Mar. Pollut. Bull. 2014, 83, 165–180. [Google Scholar] [CrossRef]
- Barlow, J.; Cameron, G.A. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gill net fishery. Mar. Mam. Sci. 2003, 19, 265–283. [Google Scholar] [CrossRef]
- Carretta, J.V.; Barlow, J.; Enriquez, L. Acoustic pingers eliminated beaked whale bycatch in a gill net fishery. Mar. Mam. Sci. 2008, 24, 956–961. [Google Scholar] [CrossRef]
- Houser, D.S.; Martin, S.W.; Finneran, J.J. Exposure amplitude and repetition affect bottlenose dolphin behavioral responses to simulated mid-frequency sonar signals. J. Exp. Mar. Biol. Ecol. 2013, 443, 123–133. [Google Scholar] [CrossRef]
- Ellison, W.T.; Southall, B.L.; Clark, C.W.; Frankel, A.S. A New Context-based Approach to Assess Marine Mammal Behavioral Responses to Anthropogenic Sounds. Conserv. Biol. 2011, 26, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Branstetter, B.K.; Bakhtiari, K.; Black, A.; Trickey, J.S.; Finneran, J.J.; Aihara, H. Energetic and informational masking of complex sounds by a bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 2016, 140, 1904–1917. [Google Scholar] [CrossRef] [PubMed]
- Branstetter, B.K.; Felice, M.; Robeck, T. Auditory masking in killer whales (Orcinus orca): Critical ratios for tonal signals in gaussian noise. J. Acoust. Soc. Am. 2021, 149, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Branstetter, B.K.; Sills, J.M. Mechanisms of auditory masking in marine mammals. Anim. Cogn. 2022, 25, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Ellison, W.; Southall, B.; Hatch, L.; Parijs, S.V.; Frankel, A.; Ponirakis, D. Acoustic masking in marine ecosystems: Intuitions, analysis, and implication. Mar. Ecol. Prog. Ser. 2009, 395, 201–222. [Google Scholar] [CrossRef]
- Holt, M.M.; Noren, D.P.; Veirs, V.; Emmons, C.K.; Veirs, S. Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. J. Acoust. Soc. Am. 2009, 125, EL27–EL32. [Google Scholar] [CrossRef]
- Scheifele, P.M.; Andrew, S.; Cooper, R.A.; Darre, M.; Musiek, F.E.; Max, L. Indication of a Lombard vocal response in the St. Lawrence River beluga. J. Acoust. Soc. Am. 2005, 117, 1486–1492. [Google Scholar] [CrossRef]
- Lesage, V.; Barrette, C.; Kingsley, M.C.S.; Sjare, B. The effects of vessel noise on the vocal behavior of belugas in the St. Lawrence River Estuary, Canada. Mar. Mam. Sci. 1999, 15, 65–84. [Google Scholar] [CrossRef]
- Melcón, M.L.; Cummins, A.J.; Kerosky, S.M.; Roche, L.K.; Wiggins, S.M.; Hildebrand, J.A. Blue whales respond to anthropogenic noise. PLoS ONE 2012, 7, e32681. [Google Scholar] [CrossRef]
- Miller, P.J.O.; Bain, D.E. Within-pod variation in the sound production of a pod of killer whales, Orcinus orca. Anim. Behav. 2000, 60, 617–628. [Google Scholar] [CrossRef]
- Risch, D.; Corkeron, P.J.; Ellison, W.T.; Parijs, S.M.V. Changes in humpback whale song occurrence in response to an acoustic source 200 km away. PLoS ONE 2012, 7, e29741. [Google Scholar] [CrossRef]
- Tyack, P.L.; Zimmer, W.M.X.; Moretti, D.; Southall, B.L.; Claridge, D.E.; Durban, J.W.; Clark, C.W.; D’Amico, A.; DiMarzio, N.; Jarvis, S.; et al. Beaked whales respond to simulated and actual Navy sonar. PLoS ONE 2011, 6, e17009. [Google Scholar] [CrossRef]
- Buckstaff, K.C. Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mammal Sci. 2004, 20, 709–725. [Google Scholar] [CrossRef]
- Henderson, E.E.; Smith, M.H.; Gassmann, M.; Wiggins, S.M.; Douglas, A.B.; Hildebrand, J.A. Delphinid behavioral responses to incidental mid-frequency active sonar. J. Acoust. Soc. Am. 2014, 136, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Holt, M.M.; Noren, D.P.; Dunkin, R.C.; Williams, T.M. Vocal performance affects metabolic rate in dolphins: Implications for animals communicating in noisy environments. J. Exp. Biol. 2015, 218, 1647–1654. [Google Scholar] [CrossRef]
- Castellote, M.; Fossa, F. Measuring Acoustic Activity as a Method to Evaluate Welfare in Captive Beluga Whales (Delphinapterus leucas). Aquat. Mamm. 2006, 32, 325–333. [Google Scholar] [CrossRef]
- Sørensen, P.M.; Haddock, A.; Guarino, E.; Jaakkola, K.; McMullen, C.; Jensen, F.H.; Tyack, P.L.; King, S.L. Anthropogenic noise impairs cooperation in bottlenose dolphins. Curr. Biol. 2023, 33, 749–754.e4. [Google Scholar] [CrossRef]
- Longden, E.G.; Gillespie, D.; Mann, D.A.; McHugh, K.A.; Rycyk, A.M.; Wells, R.S.; Tyack, P.L. Comparison of the Marine Soundscape before and during the COVID-19 Pandemic in Dolphin Habitat in Sarasota Bay, FL. J. Acoust. Soc. Am. 2022, 152, 3170–3185. [Google Scholar] [CrossRef]
- Jones, B.L.; Oswald, M.; Tufano, S.; Baird, M.; Mulsow, J.; Ridgway, S.H. A system for monitoring acoustics to supplement an animal welfare plan for bottlenose dolphins. J. Zool. Bot. Gard. 2021, 2, 222–233. [Google Scholar] [CrossRef]
- Houser, D.S.; Yost, W.; Burkard, R.; Finneran, J.J.; Reichmuth, C.; Mulsow, J. A review of the history, development and application of auditory weighting functions in humans and marine mammals. J. Acoust. Soc. Am. 2017, 141, 1371–1413. [Google Scholar] [CrossRef]
- Southall, B.L.; Bowles, A.E.; Ellison, W.T.; Finneran, J.J.; Gentry, R.L.; Greene, C.R.; Kastak, D.; Ketten, D.R.; Miller, J.H.; Nachtigall, P.E.; et al. Marine mammal noise-exposure criteria: Initial scientific recommendations. Bioacoustics 2008, 17, 273–275. [Google Scholar] [CrossRef]
- Branstetter, B.K.; Alstyne, K.R.V.; Wu, T.A.; Simmons, R.A.; Curtis, L.D.; Xitco, M.J. Composite critical ratio functions for odontocete cetaceans. J. Acoust. Soc. Am. 2017, 142, 1897–1900. [Google Scholar] [CrossRef]
- Erbe, C.; Reichmuth, C.; Cunningham, K.; Lucke, K.; Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 2016, 103, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Esch, H.C.; Sayigh, L.S.; Wells, R.S. Quantifying parameters of bottlenose dolphin signature whistles. Mar. Mammal Sci. 2009, 25, 976–986. [Google Scholar] [CrossRef]
- Richards, D.G.; Wolz, J.P.; Herman, L.M. Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenosed dolphin, Tursiops truncatus. J. Comp. Psychol. 1984, 98, 10–28. [Google Scholar] [CrossRef] [PubMed]
Data Type | N Events | MF Events | HF Events | Avg. Duration (min ± 1 SD) | SPL Range (dB re 1 µPa) |
---|---|---|---|---|---|
Pre-Onset | 38 | - | - | 5 | - |
Onset | 38 | 6 | 32 | 4.90 ± 0.49 | 102.6–148.3 |
Control | 30 | - | - | 54.67 ± 68.43 | - |
Event | 30 | 4 | 26 | 73.31 ± 95.10 | 108.6–161.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sportelli, J.J.; Heimann, K.M.; Jones, B.L. Moderate Anthropogenic Noise Exposure Does Not Affect Navy Bottlenose Dolphin (Tursiops truncatus) Whistle Rates. J. Mar. Sci. Eng. 2024, 12, 441. https://doi.org/10.3390/jmse12030441
Sportelli JJ, Heimann KM, Jones BL. Moderate Anthropogenic Noise Exposure Does Not Affect Navy Bottlenose Dolphin (Tursiops truncatus) Whistle Rates. Journal of Marine Science and Engineering. 2024; 12(3):441. https://doi.org/10.3390/jmse12030441
Chicago/Turabian StyleSportelli, Jessica J., Kelly M. Heimann, and Brittany L. Jones. 2024. "Moderate Anthropogenic Noise Exposure Does Not Affect Navy Bottlenose Dolphin (Tursiops truncatus) Whistle Rates" Journal of Marine Science and Engineering 12, no. 3: 441. https://doi.org/10.3390/jmse12030441
APA StyleSportelli, J. J., Heimann, K. M., & Jones, B. L. (2024). Moderate Anthropogenic Noise Exposure Does Not Affect Navy Bottlenose Dolphin (Tursiops truncatus) Whistle Rates. Journal of Marine Science and Engineering, 12(3), 441. https://doi.org/10.3390/jmse12030441