Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels
Abstract
:1. Introduction
2. Description of the GFRP Stiffened Plate
3. Multi-Scale Analysis
3.1. Micro- and Meso-Scale RVE Models
3.2. Elastic Properties of Composites
3.3. Failure Criterion and Stiffness Degradation Model
3.3.1. Fibre Failure
3.3.2. Matrix Failure
3.3.3. Stiffness Degradation
4. Micro- and Meso-Scale Analysis Results
4.1. Micro-Scale Results
4.2. Meso-Scale Results
4.2.1. CSM Material
4.2.2. WR Material
4.2.3. Mean Material Properties for Macro-Scale Analysis
5. Macro-Scale Analysis of GFRP Stiffened Panel
5.1. Numerical Modelling
5.2. Numerical Results
6. Parametric Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- L.R. (Lloyd’s Register). Rules and Regulations for the Classification of Special Service Craft; Lloyd’s Register: London, UK, 2020. [Google Scholar]
- L.R. (Lloyd’s Register). Rules for the Manufacture, Testing and Certification of Materials; Lloyd’s Register: London, UK, 2020. [Google Scholar]
- Zhou, X.Y.; Qian, S.Y.; Wang, N.W.; Xiong, W.; Wu, W.Q. A review on stochastic multi-scale analysis for FRP composite structures. Compos. Struct. 2022, 284, 115132. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, L. A review of multi-scale numerical modeling of three-dimensional woven fabric. Compos. Struct. 2021, 263, 113685. [Google Scholar] [CrossRef]
- Luan, S.F.; Li, H.Z.; Jia, Y.X.; An, L.J.; Han, Y.C.; Xiang, Q.; Zhao, J.; Li, J.X.; Han, C.C. Analysis of micro-failure behaviors in hybrid fiber model composites. Polymer 2006, 47, 6218–6225. [Google Scholar] [CrossRef]
- Zhang, B.M.; Yang, Z.; Sun, X.Y.; Tang, Z.W. A virtual experimental approach to estimate composite mechanical properties: Modeling with an explicit finite element method. Comput. Mater. Sci. 2010, 49, 645–651. [Google Scholar] [CrossRef]
- Kurnatowski, B.; Matzenmiller, A. Coupled two scale analysis of fiber reinforced composite structures with microscopic damage evolution. Int. J. Solids Struct. 2012, 49, 2404–2417. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, B.M.; Qing, X.L.; Xie, H.M. In-plane shear properties and damage process of composites based on unit cell analytic model. Acta Mater. Compos. Sin. 2013, 30, 153–157. [Google Scholar] [CrossRef]
- Qi, L.H.; Tian, W.L.; Zhou, J.M. Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio. Compos. Struct. 2015, 131, 843–851. [Google Scholar] [CrossRef]
- Chen, Z.X.; Huang, T.Y.; Shao, Y.M.; Li, Y.; Xu, H.Y.; Avery, K.; Zeng, D.; Chen, W.; Su, X.M. Multi-scale finite element modeling of sheet moulding compound (SMC) composite structure based on stochastic mesostructure reconstruction. Compos. Struct. 2018, 188, 25–38. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Maim, P.; Trias, D.; Mayugo, J.A. A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part I: Formulation. Compos. Sci. Technol. 2005, 65, 2039–2048. [Google Scholar] [CrossRef]
- Li, Y.Y.; Long, S.Y.; Cui, J.Z. Finite element computation for mechanics parameters of composite material with randomly distributed multi-scale grains. Eng. Anal. Bound. Elem. 2008, 32, 290–298. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, B.R. Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE. Int. J. Solids Struct. 2010, 47, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.L.; Qi, L.H.; Zhou, J.M.; Liang, J.H.; Ma, Y.Q. Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications. Compos. Struct. 2015, 131, 366–373. [Google Scholar] [CrossRef]
- Ivancevic, D.; Smojver, I. Explicit multi-scale modelling of impact damage on laminated composites–part II: Multi-scale analyses. Compos. Struct. 2016, 145, 259–268. [Google Scholar] [CrossRef]
- Ivancevic, D.; Smojver, I. Micromechanical damage modelling using a two-scale method for laminated composite structures. Compos. Struct. 2014, 108, 223–233. [Google Scholar] [CrossRef]
- Li, X.; Guan, Z.D.; Li, Z.S.; Liu, L. A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chin. J. Aeronaut. 2014, 6, 1430–1441. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, C.; Zhu, P. Generation of random fiber distribution for unidirectional fiber reinforced composites based on particle swarm optimiser. Polym. Compos. 2019, 40, 1643–1653. [Google Scholar] [CrossRef]
- Jiao, Z.W.; Zhou, C. Multi-scale mechanical analysis of tridimensional woven composite pipe. Acta Mater. Compos. Sin. 2010, 27, 122–128. Available online: https://fhclxb.buaa.edu.cn/en/article/id/10246 (accessed on 1 May 2010).
- Dinh, T.D.; Rezaei, A.; Daelemans, L.; Mollaert, M.; Van Hemelrijck, D.; Van Paepegem, W. A hybrid micro-meso-scale unit cell model for homogenisation of the nonlinear orthotropic material behavior of coated fabrics used in tensioned membrane structures. Compos. Struct. 2017, 162, 271–279. [Google Scholar] [CrossRef]
- Zhou, L.C.; Chen, M.W.; Liu, C.; Wu, H.A. A multi-scale stochastic fracture model for characterising the tensile behavior of 2D woven composites. Compos. Struct. 2018, 204, 536–547. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, X.W.; Mao, C.J. Progressive damage simulation and strength prediction of 3D braided composites. Acta Mater. Compos. Sin. 2011, 28, 222–230. Available online: https://fhclxb.buaa.edu.cn/en/article/id/10523 (accessed on 1 February 2011).
- Shen, X.L.; Gong, L.D. Numerical modeling of braided composites using energy method. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Yu, X.G.; Cui, J.Z. The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 2008, 67, 471–480. [Google Scholar] [CrossRef]
- Lu, Z.X.; Xia, B.; Wang, C.Y. Progressive damage simulation and strength prediction of three-dimensional and six-directional braided composites. Acta Mater. Compos. Sin. 2013, 30, 166–173. Available online: https://fhclxb.buaa.edu.cn/en/article/id/11976 (accessed on 1 May 2013).
- Liang, B.; Zhang, W.; Fenner, J.S.; Gao, J.; Shi, Y.; Zeng, D.; Su, X.; Liu, W.; Cao, J. Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105460. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Guo, Q.W.; Chen, X.M.; Xie, J.B.; Chen, L. Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates. . Compos. Struct. 2020, 252, 112693. [Google Scholar] [CrossRef]
- Smilauer, V.; Hoover, C.G.; Bazant, Z.P. Multi-scale simulation of fracture of braided composites via repetitive unit cells. Eng. Fract. Mech. 2011, 78, 901–918. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Dang, H.Y.; Zhang, C.; Yun, G.J.; Li, Y.L. A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 113–125. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, L.; Fu, Y.; Yao, X.; Yang, H. Prediction of mechanical properties on 3D braided composites with void defects. Compos. Part B Eng. 2020, 197, 108164. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, X.; Gao, X. Micro-mesoscopic prediction of void defect in 3D braided composites. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106450. [Google Scholar] [CrossRef]
- Ge, L.; Li, H.; Zhong, J.; Zhang, C.; Fang, D. Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects. Compos. Sci. Technol. 2021, 211, 108830. [Google Scholar] [CrossRef]
- Ge, L.; Li, H.; Gao, Y.; Lou, R.; Liu, K.; Zhong, J.; Fang, D. Parametric analyses on multi-scale elastic behavior of 3D braided composites with pore defects. Compos. Struct. 2022, 287, 115332. [Google Scholar] [CrossRef]
- Omairey, S.L.; Dunning, P.D.; Sriramula, S. Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng. Comput. 2019, 35, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Huang, D.; Dou, B.Q.; Cui, S. Research on Microscopic Damage of GFRP Tensile Properties. Appl. Mech. Mater. 2015, 723, 489–493. [Google Scholar] [CrossRef]
- Zhou, Q.S. Research on Mechanical Properties of 2d Woven Ceramic Matrix Composites Based on Multi-Scale Method. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- Pan, Y.; Iorga, L.; Pelegri, A.A. Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos. Sci. Technol. 2008, 68, 2792–2798. [Google Scholar] [CrossRef]
- Xia, Z.H.; Zhang, Y.F.; Ellyin, F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 2003, 40, 1907–1921. [Google Scholar] [CrossRef]
- Priyadharshani, S.A.; Prasad, A.M.; Sundaravadivelu, R. Analysis of GFRP stiffened composite plates with rectangular cut-out. Compos. Struct. 2017, 169, 42–51. [Google Scholar] [CrossRef]
- Doan, V.T.; Liu, B.; Garbatov, Y.; Wu, W.; Guedes Soares, C. Strength assessment of aluminium and steel stiffened panels with openings on longitudinal girders. Ocean Eng. 2020, 200, 107047. [Google Scholar] [CrossRef]
- Liu, B.; Doan, V.T.; Garbatov, Y.; Wu, W.; Guedes Soares, C. Study on ultimate compressive strength of aluminium-alloy plates and stiffened panels. J. Mar. Sci. Appl. 2020, 19, 534–552. [Google Scholar] [CrossRef]
- Liu, B.; Yao, X.; Lin, Y.; Wu, W.; Guedes Soares, C. Experimental and numerical analysis of ultimate compressive strength of long-span stiffened panels. Ocean Eng. 2021, 237, 109633. [Google Scholar] [CrossRef]
- Liu, B.; Gao, L.; Ao, L.; Wu, W. Experimental and numerical analysis of ultimate compressive strength of stiffened panel with openings. Ocean Eng. 2021, 220, 108453. [Google Scholar] [CrossRef]
Material Properties | CSM600, fc = 0.33 | WR800, fc = 0.5 |
---|---|---|
Ultimate tensile strength [MPa] | 91 | 190 |
Tensile modulus [MPa] | 6950 | 14,500 |
Ultimate compressive strength [MPa] | 122 | 147 |
Compressive modulus [MPa] | 7200 | 14,000 |
Ultimate shear strength [MPa] | 64 | 78 |
Shear modulus [MPa] | 2801 | 3090 |
Poisson’s ratio | 0.24 | 0.3 |
Thickness [mm] | 1.250 | 0.979 |
Angle [o] | - | 0/90 |
Ultimate elongation | - | 2.0% |
Parameter | C-Glass Fibre in CSM | E-Glass Fibre in WR | Polyester Resin Matrix in CSM and WR |
---|---|---|---|
Density [kg/m3] | 2520 | 2580 | 1300 |
Young’s modulus [MPa] | 69,000 | 72,000 | 2000 |
Poisson’s ratio | 0.2 | 0.22 | 0.35 |
Yield strength [Mpa] | 3300 | 3400 | 40 |
Fibre diameter [μm] | 14.5 | 14.5 | - |
Fibre volume fraction | 0.71 | 0.8 | - |
Material Property | E11 [MPa] | E22 [MPa] | E33 [MPa] | G12 [MPa] | G13 [MPa] | G23 [MPa] | V12 | V13 | V23 | |
---|---|---|---|---|---|---|---|---|---|---|
Micro | CSM Fibre bundle | 34,343 | 7434 | 6705 | 3376 | 2915 | 2585 | 0.25 | 0.26 | 0.42 |
Yarn in WR | 37,257 | 7794 | 7445 | 3376 | 3022 | 2554 | 0.26 | 0.26 | 0.37 | |
Meso | CSM laminate | 9722 | 3337 | 3226 | 1355 | 1154 | 1078 | 0.35 | 0.29 | 0.43 |
WR laminate | 14,257 | 14,200 | 5083 | 2055 | 1511 | 1511 | 0.12 | 0.38 | 0.38 |
Material Property | Micro | Meso | ||
---|---|---|---|---|
Fibre Bundle in CSM | Yarn in WR | CSM Laminate | WR Laminate | |
X-tensile strength (MPa) | 1523 | 1650 | 108 | 151 |
X-compressive strength (MPa) | 1547 | 1686 | 184 | 92 |
Y-tensile strength (MPa) | 117 | 211 | 50 | 123 |
Y-compressive strength (MPa) | 221 | 237 | 51 | 92 |
Z-tensile strength (MPa) | 139 | 163 | - | - |
Z-compressive strength (MPa) | 175 | 293 | - | - |
XY-shear strength (MPa) | 33 | 31 | 42 | 43 |
XZ-shear strength (MPa) | 27 | 29 | 24 | 57 |
YZ-shear strength (MPa) | 61 | 107 | 24 | 58 |
Equivalent Property | E11 [MPa] | E22 [MPa] | E33 [MPa] | G12 [MPa] | G13 [MPa] | G23 [MPa] | V12 | V13 | V23 |
---|---|---|---|---|---|---|---|---|---|
CSM laminate | 6530 | 6530 | 3226 | 1355 | 1116 | 1116 | 0.35 | 0.36 | 0.36 |
WR laminate | 14,229 | 14,229 | 5083 | 2055 | 1511 | 1511 | 0.12 | 0.38 | 0.38 |
Equivalent Property | CSM Laminate | WR Laminate |
---|---|---|
X-tensile strength [MPa] | 79 | 137 |
X-compressive strength [MPa] | 118 | 92 |
Y-tensile strength [MPa] | 79 | 137 |
Y-compressive strength [MPa] | 118 | 92 |
XY-shear strength [MPa] | 42 | 43 |
XZ-shear strength [MPa] | 24 | 57.5 |
YZ- shear strength [MPa] | 24 | 57.5 |
Material Property | Unit | Value |
---|---|---|
Knn | MPa/mm | 100,000 |
Kss | MPa/mm | 100,000 |
Ktt | MPa/mm | 100,000 |
Friction coefficient | - | 0.2 |
Stress, normal only | MPa | 60 |
Stress, shear-1 only | MPa | 80 |
Stress, shear-2 only | MPa | 80 |
Total displacement | mm | 0.352 |
Parameter | Longitudinal Tensile Fracture Energy [N/mm] | Longitudinal Compressive Fracture Energy [N/mm] | Transverse Tensile Fracture Energy [N/mm] | Transverse Compressive Fracture Energy [N/mm] |
---|---|---|---|---|
Value | 45 | 40 | 0.165 | 0.8 |
Parameter | Fibre Bundle Content [%] | Diameter of Fibre Bundle [mm] | Braided Angle of Yarn [°] | Cross-Sectional Area of Yarn [sq. mm] |
---|---|---|---|---|
Value | 27, 30, 33, 36, 39 | 0.15, 0.17, 0.19,0.21, 0.23 | 35, 40, 45, 50, 55 | 0.19, 0.2, 0.21, 0.22, 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, X.; Garbatov, Y. Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels. J. Mar. Sci. Eng. 2023, 11, 108. https://doi.org/10.3390/jmse11010108
Liu B, Zhang X, Garbatov Y. Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels. Journal of Marine Science and Engineering. 2023; 11(1):108. https://doi.org/10.3390/jmse11010108
Chicago/Turabian StyleLiu, Bin, Xiaoduan Zhang, and Yordan Garbatov. 2023. "Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels" Journal of Marine Science and Engineering 11, no. 1: 108. https://doi.org/10.3390/jmse11010108
APA StyleLiu, B., Zhang, X., & Garbatov, Y. (2023). Multi-Scale Analysis for Assessing the Impact of Material Composition and Weave on the Ultimate Strength of GFRP Stiffened Panels. Journal of Marine Science and Engineering, 11(1), 108. https://doi.org/10.3390/jmse11010108