Ria de Alvor Suitability for Aquaculture: Future Challenges
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Model Implementation
3.2. Suitability Index
- Define the main environmental factors affecting bivalves and fish development.
- Assign a weight for each environmental factor based on their influence on the success of bivalve and fish aquaculture development.
- Identify the thresholds and optimal values of each environmental factor favorable to the production and growth of the Portuguese oyster, mussels, and gilthead sea bream.
- Give a score between 0 and 1 to each simulated variable, considering the thresholds and optimal values.
- Compute the SI using Equation (2).
3.3. Climate Change Scenario
4. Results
4.1. Abiotic Characterization of the Ria de Alvor
4.2. Ria de Alvor Suitability Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An Overview of Ecological Status, Vulnerability and Future Perspectives of European Large Shallow, Semi-Enclosed Coastal Systems, Lagoons and Transitional Waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Robins, P.E.; Skov, M.W.; Lewis, M.J.; Giménez, L.; Davies, A.G.; Malham, S.K.; Neill, S.P.; McDonald, J.E.; Whitton, T.A.; Jackson, S.E.; et al. Impact of Climate Change on UK Estuaries: A Review of Past Trends and Potential Projections. Estuar. Coast. Shelf Sci. 2016, 169, 119–135. [Google Scholar] [CrossRef]
- Leal Filho, W.; Nagy, G.J.; Martinho, F.; Saroar, M.; Erache, M.G.; Primo, A.L.; Pardal, M.A.; Li, C. Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 585. [Google Scholar] [CrossRef]
- Rocha, C.P.; Cabral, H.N.; Marques, J.C.; Gonçalves, A.M.M. A Global Overview of Aquaculture Food Production with a Focus on the Activity’s Development in Transitional Systems—The Case Study of a South European Country (Portugal). J. Mar. Sci. Eng. 2022, 10, 417. [Google Scholar] [CrossRef]
- Vaz, L.; Sousa, M.C.; Gómez-Gesteira, M.; Dias, J.M. A Habitat Suitability Model for Aquaculture Site Selection: Ria de Aveiro and Rias Baixas. Sci. Total Environ. 2021, 801, 149687. [Google Scholar] [CrossRef]
- Callam, B.R.; Allen, S.K.; Frank-Lawale, A. Genetic and Environmental Influence on Triploid Crassostrea Virginica Grown in Chesapeake Bay: Growth. Aquaculture 2016, 452, 97–106. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- Brander, K.M. Global Fish Production and Climate Change. Proc. Natl. Acad. Sci. USA. 2007, 104, 19709–19714. [Google Scholar] [CrossRef]
- Steeves, L.E.; Filgueira, R.; Guyondet, T.; Chassé, J.; Comeau, L. Past, Present, and Future: Performance of Two Bivalve Species Under Changing Environmental Conditions. Front. Mar. Sci. 2018, 5, 184. [Google Scholar] [CrossRef]
- Kooijman, B. Dynamic Energy Budget Theory for Metabolic Organisation, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-13191-9. [Google Scholar]
- Rato, A.; Joaquim, S.; Matias, A.M.; Roque, C.; Marques, A.; Matias, D. The Impact of Climate Change on Bivalve Farming: Combined Effect of Temperature and Salinity on Survival and Feeding Behavior of Clams Ruditapes Decussatus. Front. Mar. Sci. 2022, 9, 932310. [Google Scholar] [CrossRef]
- Picado, A.; Oliveira, V.; Pereira, H.; Sousa, M.C.; Costa, L.; Almeida, A.; Dias, J.M. Assessing the Potential of Minho and Lima Estuaries for Aquaculture. J. Coast. Res. 2020, 95, 148–152. [Google Scholar] [CrossRef]
- Brito, A.C.; Pereira, H.; Picado, A.; Cruz, J.; Cereja, R.; Biguino, B.; Chainho, P.; Nascimento, Â.; Carvalho, F.; Cabral, S.; et al. Increased Oyster Aquaculture in the Sado Estuary (Portugal): How to Ensure Ecosystem Sustainability? Sci. Total Environ. 2023, 855, 158898. [Google Scholar] [CrossRef]
- IPMA-Zonas de Produção Moluscos Bivalves. Available online: https://www.ipma.pt/pt/bivalves/zonas/ (accessed on 13 February 2023).
- Brito, A.C.; Newton, A.; Tett, P.; Fernandes, T.F. How Will Shallow Coastal Lagoons Respond to Climate Change? A Modelling Investigation. Estuar. Coast. Shelf Sci. 2012, 112, 98–104. [Google Scholar] [CrossRef]
- Rodrigues, M.; Rosa, A.; Cravo, A.; Jacob, J.; Fortunato, A.B. Effects of Climate Change and Anthropogenic Pressures in the Water Quality of a Coastal Lagoon (Ria Formosa, Portugal). Sci. Total Environ. 2021, 780, 146311. [Google Scholar] [CrossRef]
- Mateus, M.; Almeida, D.; Simonson, W.; Felgueiras, M.; Banza, P.; Batty, L. Conflictive Uses of Coastal Areas: A Case Study in a Southern European Coastal Lagoon (Ria de Alvor, Portugal). Ocean. Coast. Manag. 2016, 132, 90–100. [Google Scholar] [CrossRef]
- Picado, A.; Mendes, J.; Ruela, R.; Pinheiro, J.; Dias, J.M. Physico-Chemical Characterization of Two Portuguese Coastal Systems: Ria de Alvor and Mira Estuary. J. Mar. Sci. Eng. 2020, 8, 537. [Google Scholar] [CrossRef]
- Brito, A.C.; Quental, T.; Coutinho, T.P.; Branco, M.A.C.; Falcão, M.; Newton, A.; Icely, J.; Moita, T. Phytoplankton Dynamics in Southern Portuguese Coastal Lagoons during a Discontinuous Period of 40 Years: An Overview. Estuar. Coast. Shelf Sci. 2012, 110, 147–156. [Google Scholar] [CrossRef]
- Campos, C.J.A.; Cachola, R.A. Faecal Coliforms in Bivalve Harvesting Areas of the Alvor Lagoon (Southern Portugal): Influence of Seasonal Variability and Urban Development. Environ. Monit. Assess. 2007, 133, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ramalho Ribeiro, A.; Altintzoglou, T.; Mendes, J.; Nunes, M.L.; Dinis, M.T.; Dias, J. Farmed Fish as a Functional Food: Perception of Fish Fortification and the Influence of Origin–Insights from Portugal. Aquaculture 2019, 501, 22–31. [Google Scholar] [CrossRef]
- Summary|TOPEX/Poseidon. Available online: https://sealevel.jpl.nasa.gov/missions/topex-poseidon/summary (accessed on 1 December 2022).
- Copernicus-Marine Environment Monitoring Service. Available online: https://marine.copernicus.eu/ (accessed on 11 December 2022).
- HypeWeb Scientific Estimates of Past, p Resent and Future Water Resources. Available online: https://hypeweb.smhi.se/ (accessed on 20 October 2022).
- Donnelly, C.; Andersson, J.C.M.; Arheimer, B. Using Flow Signatures and Catchment Similarities to Evaluate the E-HYPE Multi-Basin Model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Stadnyk, T.A.; MacDonald, M.K.; Tefs, A.; Déry, S.J.; Koenig, K.; Gustafsson, D.; Isberg, K.; Arheimer, B. Hydrological Modeling of Freshwater Discharge into Hudson Bay Using HYPE. Elem. Sci. Anthr. 2020, 8, 43. [Google Scholar] [CrossRef]
- Zachopoulos, K.; Kokkos, N.; Sylaios, G. Salt Wedge Intrusion Modeling along the Lower Reaches of a Mediterranean River. Reg. Stud. Mar. Sci. 2020, 39, 101467. [Google Scholar] [CrossRef]
- Frishfelds, V.; Murawski, J.; She, J. Transport of Microplastics From the Daugava Estuary to the Open Sea. Front. Mar. Sci. 2022, 9, 886775. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Correia, S.; Picado, A.; de Montaudouin, X.; Freitas, R.; Rocha, R.J.M.; Dias, J.M.; Magalhães, L. Parasite Assemblages in a Bivalve Host Associated with Changes in Hydrodynamics. Estuaries Coasts 2020, 44, 1036–1049. [Google Scholar] [CrossRef]
- AHP Calculator-AHP-OS. Available online: https://bpmsg.com/ahp/ahp-calc.php?lang=en (accessed on 20 October 2022).
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Matias, D.; Joaquim, S.; Matias, A.M.; Leitão, A. Reproductive Effort of the European Clam Ruditapes Decussatus (Linnaeus, 1758): Influence of Different Diets and Temperatures. Invertebr. Reprod. Dev. 2016, 60, 49–58. [Google Scholar] [CrossRef]
- Widdows, J.; Navarro, J.M. Influence of Current Speed on Clearance Rate, Algal Cell Depletion in the Water Column and Resuspension of Biodeposits of Cockles (Cerastoderma Edule). J. Exp. Mar. Biol. Ecol. 2007, 343, 44–51. [Google Scholar] [CrossRef]
- Lawson, T.B. Site Selection for Aquaculture. In Fundamentals of Aquacultural Engineering; Lawson, T.B., Ed.; Springer: Boston, MA, USA, 1995; pp. 40–47. ISBN 978-1-4613-0479-1. [Google Scholar]
- Campbell, M.D.; Hall, S.G. Hydrodynamic Effects on Oyster Aquaculture Systems: A Review. Rev. Aquac. 2019, 11, 896–906. [Google Scholar] [CrossRef]
- LongLine. Available online: https://Longline.Co.Uk/Meta/List (accessed on 1 October 2022).
- Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Martínez-Castro, J.L.; et al. Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, M.I., Gomis, M., et al., Eds.; IPCC Interactive Atlas: Geneva, Switzerland, 2021; Available online: http://interactive-atlas.ipcc.ch/ (accessed on 1 February 2023).
- CMIP6. Available online: https://Esgf-Node.Llnl.Gov/Search/Cmip6/ (accessed on 1 February 2023).
- Falkowski, P.G. The Role of Phytoplankton Photosynthesis in Global Biogeochemical Cycles. Photosynth. Res. 1994, 39, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, M.; Pombo, A.; Borges, C.; Brito, A.C.; Zacarias, N.; Esteves, R.; Palma, C. Potential for Coastal and Offshore Aquaculture in Portugal: Insights from Physico-Chemical and Oceanographic Conditions. Appl. Sci. 2022, 12, 2742. [Google Scholar] [CrossRef]
- Wu, R.S.S. The Environmental Impact of Marine Fish Culture: Towards a Sustainable Future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Shahidul Islam, M.; Tanaka, M. Impacts of Pollution on Coastal and Marine Ecosystems Including Coastal and Marine Fisheries and Approach for Management: A Review and Synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Bostock, J.; Lane, A.; Hough, C.; Yamamoto, K. An Assessment of the Economic Contribution of EU Aquaculture Production and the Influence of Policies for Its Sustainable Development. Aquacult. Int. 2016, 24, 699–733. [Google Scholar] [CrossRef]
- Klinger, D.; Naylor, R. Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Cloern, J.E. Phytoplankton Bloom Dynamics in Coastal Ecosystems: A Review with Some General Lessons from Sustained Investigation of San Francisco Bay, California. Rev. Geophys. 1996, 34, 127–168. [Google Scholar] [CrossRef]
- Des, M.; Gómez-Gesteira, J.L.; deCastro, M.; Iglesias, D.; Sousa, M.C.; ElSerafy, G.; Gómez-Gesteira, M. Historical and Future Naturalization of Magallana Gigas in the Galician Coast in a Context of Climate Change. Sci. Total Environ. 2022, 838, 156437. [Google Scholar] [CrossRef]
- Picado, A.; Vaz, N.; Alvarez, I.; Dias, J.M. Modelling Coastal Upwelling off NW Iberian Peninsula: New Insights on the Fate of Phytoplankton Blooms. Sci. Total Environ. 2023, 874, 162416. [Google Scholar] [CrossRef]
- Ferreira, S.; Sousa, M.; Picado, A.; Vaz, N.; Dias, J.M. New Insights about Upwelling Trends off the Portuguese Coast: An ERA5 Dataset Analysis. J. Mar. Sci. Eng. 2022, 10, 1849. [Google Scholar] [CrossRef]
- Carregosa, V.; Velez, C.; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Physiological and Biochemical Responses of Three Veneridae Clams Exposed to Salinity Changes. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 177–178, 1–9. [Google Scholar] [CrossRef]
- Sarà, G.; Romano, C.; Widdows, J.; Staff, F.J. Effect of Salinity and Temperature on Feeding Physiology and Scope for Growth of an Invasive Species (Brachidontes Pharaonis-MOLLUSCA: BIVALVIA) within the Mediterranean Sea. J. Exp. Mar. Biol. Ecol. 2008, 363, 130–136. [Google Scholar] [CrossRef]
- Bœuf, G.; Payan, P. How Should Salinity Influence Fish Growth? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 411–423. [Google Scholar] [CrossRef] [PubMed]
Environmental Factor | Bivalve | Fish | ||
---|---|---|---|---|
Weight (%) | Rank | Weight (%) | Rank | |
Bathymetry | 6.7 | 6 | 4.7 | 4 |
Velocity | 13.5 | 4 | 7.9 | 3 |
Water temperature | 33.0 | 1 | 34.6 | 2 |
Salinity | 8.1 | 5 | 4.4 | 5 |
DO concentration | 16.0 | 3 | 41.5 | 1 |
Chl concentration | 19.4 | 2 | 3.9 | 6 |
pH | 3.3 | 7 | 3.0 | 7 |
Environmental Factor | Portuguese Oyster | Mussels | Gilthead Sea Bream | |||
---|---|---|---|---|---|---|
Threshold | Optimal | Threshold | Optimal | Threshold | Optimal | |
Water temperature (°C) | 3–35 | 15–25 | 5–30 | 14–20 | 6–33 | 17–26 |
Chl (μg/L) | >0.5 | >2 | >0.5 | >2 | 0–15 | 2–8 |
Salinity | 15–40 | 25–35 | 8–39 | 25–30 | 5–44 | 15–38 |
DO (mg/L) | 4–10 | 5–8 | 1–10 | 5–7 | 2.7–10 | 7–9 |
pH | 6.5–9.0 | 7.5–8.5 | 6.5–9 | 7.1–8.3 | 5.5–9.0 | 7.0–8.0 |
Depth (m) | 0–7.0 | 0–10 | 0–30 | |||
Velocity (m/s) | 0.01–0.22 | 0–0.3 | 0.05–0.2 |
Season | AT (°C) 1 | MSL (m) 2 | SST (°C) 3 | Salinity | Chl (µg/L) 4 | DO (mg/L) 5 | pH |
---|---|---|---|---|---|---|---|
DJF | +3.2 | +0.7 | +2.1 | −0.8 | −0.18 | −0.20 | −0.40 |
MAM | +4.1 | +2.5 | |||||
JJA | +4.7 | +2.8 | |||||
SON | +4.7 | +2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picado, A.; Pereira, H.; Sousa, M.C.; Dias, J.M. Ria de Alvor Suitability for Aquaculture: Future Challenges. J. Mar. Sci. Eng. 2023, 11, 1009. https://doi.org/10.3390/jmse11051009
Picado A, Pereira H, Sousa MC, Dias JM. Ria de Alvor Suitability for Aquaculture: Future Challenges. Journal of Marine Science and Engineering. 2023; 11(5):1009. https://doi.org/10.3390/jmse11051009
Chicago/Turabian StylePicado, Ana, Humberto Pereira, Magda C. Sousa, and João Miguel Dias. 2023. "Ria de Alvor Suitability for Aquaculture: Future Challenges" Journal of Marine Science and Engineering 11, no. 5: 1009. https://doi.org/10.3390/jmse11051009
APA StylePicado, A., Pereira, H., Sousa, M. C., & Dias, J. M. (2023). Ria de Alvor Suitability for Aquaculture: Future Challenges. Journal of Marine Science and Engineering, 11(5), 1009. https://doi.org/10.3390/jmse11051009