Microscopic Analysis of Natural Fracture Properties in Organic-Rich Continental Shale Oil Reservoirs: A Case Study from the Lower Jurassic in the Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Experiments and Methodology
3.1. The Mechanics of the Shale Oil Reservoir
3.2. The CT Scanning of Multi-Scale Shale Cores
3.3. Natural Fracture Simulation
4. Results
4.1. The Shale Oil Reservoir’s Mechanical Data
4.2. The Microscopic Dimensions of Natural Shale Fractures
4.3. The Tortuosity Features at Different Shale’s Natural Fracture Scales
4.4. Simulation of Shale Natural Fracture Seepage with Different Sizes
5. Discussion
5.1. The In Situ Stress Characteristic of the Shale Oil Reservoir
5.2. Comparison of the Natural Fracture Shale’s CT Scanning with Multi-Scales
5.3. The Tortuosity Changes in Different Scales
5.4. Sensitivity of Fracture Permeability at Variable Surrounding Pressures
6. Conclusions
- The in situ stress of the shale reservoir exhibits the characteristic of σH > σv > σh, with σv and σh being particularly similar, resulting in a strike-slip fracture pattern. The relatively high lateral stress coefficient between 1.020 and 1.037 indicates that the horizontal stresses are higher than the average level. The above understanding helps to predict the natural fracture pattern.
- While the 2 mm core CT scan offers a more detailed view of the fractures and connected pores, the high-resolution results in more pore information, which may not fully reveal additional information about the fractures. Therefore, if the primary focus of the study is on fractures, then the 25 mm core would be a more suitable option to study the microscopic natural fractures.
- The tortuosity of various fractures indicates that larger fractures tend to maintain a more stable morphology, whereas smaller-scale fractures tend to exhibit a greater diversity of shapes, which is not conducive to fluid flow.
- The fracture permeability displays a nearly linear decrease with increasing surrounding pressure, suggesting that the stress sensitivity of fracture permeability is approximately similar across different fracture scales.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fathoni, A.Z.; Batts, B.D. A literature review of fuel stability studies with a particular emphasis on shale oil. Energy Fuels 1991, 5, 682–693. [Google Scholar] [CrossRef]
- Fu, C.Y. China’s shale gas and shale oil resources: Opportunities and challenges. Energy Explor. Exploit. 2014, 32, 759–769. [Google Scholar] [CrossRef]
- Mahzari, P.; Mitchell, T.M.; Jones, A.P.; Oelkers, E.H.; Juri, J.E. Novel laboratory investigation of huff-n-puff gas injection for shale oils under realistic reservoir conditions. Fuel 2020, 285, 118950. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.; Zhang, Y.; He, J.; Fu, X.; Yang, L.; Xing, J.; Zhao, X. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Pet. Explor. Dev. 2021, 48, 608–624. [Google Scholar] [CrossRef]
- Wu, T.; Pan, Z.J.; Liu, B.; Connell, L.D.; Fu, X.F. Laboratory characterization of shale oil storage behavior: A comprehensive review. Energy Fuels 2021, 35, 7305–7318. [Google Scholar] [CrossRef]
- Curnow, W.J. The prospects for shale oil in Australia. Fuel 1987, 66, 292–294. [Google Scholar] [CrossRef]
- Zou, C.N.; Yang, Z.; Cui, J.W.; Zhu, R.K.; Hou, L.H.; Tao, S.Z.; Yuan, X.J.; Wu, S.T.; Lin, S.H.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 5–27. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. An investigation of long range reliance on shale oil and shale gas production in the U.S. market. Energy 2020, 195, 116933. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Li, J.; Chi, Y.; Li, J.; Fu, X. Stress sensitivity of tight reservoirs and its effect on oil saturation: A case study of Lower Cretaceous tight clastic reservoirs in the Hailar Basin, Northeast China. J. Pet. Sci. Eng. 2020, 184, 106484. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Bai, L.H.; Liu, B.; Du, Y.J.; Wang, B.Y.; Tian, S.S.; Wang, L.; Xue, Z.Q. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: Insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Pet. Sci. 2022, 19, 486–497. [Google Scholar] [CrossRef]
- Cui, D.; Yin, H.L.; Liu, Y.P.; Li, J.; Pan, S.; Wang, Q. Effect of final pyrolysis temperature on the composition and structure of shale oil: Synergistic use of multiple analysis and testing methods. Energy 2022, 252, 124062. [Google Scholar] [CrossRef]
- Orangi, A.; Nagarajan, N.R.; Honarpour, M.M.; Rosenzweig, J. Unconventional shale oil and gas-condensate reservoir production, impact of rock, fluid, and hydraulic fractures. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 24–26 January 2011. [Google Scholar] [CrossRef]
- Boak, J.; Kleinberg, R. 4–Shale Gas, Tight Oil, Shale Oil and Hydraulic Fracturing. In Future Energy, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–95. [Google Scholar]
- Shaldybin, M.V.; Wilson, M.J.; Wilson, L.; Lopushnyak, Y.M.; Brydson, R.; Krupskaya, V.V.; Kondrashova (Deeva), E.S.; Glotov, A.V.; Goncharov, I.V.; Samoilenko, V.V.; et al. The nature, origin and significance of luminescent layers in the Bazhenov Shale Formation of West Siberia, Russia. Mar. Pet. Geol. 2019, 100, 358–375. [Google Scholar] [CrossRef]
- Khakimova, L.; Bondarenko, T.; Cheremisin, A.; Myasnikov, A.; Varfolomeev, M. High pressure air injection kinetic model for Bazhenov Shale Formation based on a set of oxidation studies. J. Pet. Sci. Eng. 2019, 172, 1120–1132. [Google Scholar] [CrossRef]
- Mukhina, E.; Cheremisin, A.; Khakimova, L.; Garipova, A.; Dvoretskaya, E.; Zvada, M.; Kalacheva, D.; Prochukhan, K.; Kasyanenko, A.; Cheremisin, A. Enhanced oil recovery method selection for shale oil based on numerical simulations. ACS Omega 2021, 6, 23731–23741. [Google Scholar] [CrossRef]
- Zou, C.N.; Pan, S.Q.; Jing, Z.H.; Gao, J.L.; Yang, Z.; Wu, S.T.; Zhao, Q. Shale oil and gas revolution and its impact. Acta Pet. Sin. 2020, 41, 1–12. [Google Scholar]
- Jin, Z.J.; Liang, X.P.; Bai, Z.R. Exploration breakthrough and its significance of Gulong lacustrine shale oil in the Songliao Basin, Northeastern China. Energy Geosci. 2022, 3, 120–125. [Google Scholar] [CrossRef]
- Wang, X.; He, S.; Guo, X.W.; Zhang, B.Q.; Chen, X.H. The Resource Evaluation of Jurassic Shale in North Fuling Area, Eastern Sichuan Basin, China. Energy Fuels 2018, 32, 1213–1222. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Laubach, S.E.; Olson, J.E.; Eichhuble, P.; Fall, A. Natural fractures in shale: A review and new observations. AAPG Bull. 2014, 98, 2165–2216. [Google Scholar] [CrossRef]
- Sun, S.S.; Huang, S.P.; Gomez-Rivas, E.; Griera, A.; Liu, B.; Xu, L.L.; Wen, Y.R.; Dong, D.Z.; Shi, Z.S.; Chang, Y.; et al. Characterization of natural fractures in deep-marine shales: A case study of the Wufeng and Longmaxi shale in the Luzhou Block Sichuan Basin, China. Front. Earth Sci. 2022, 1–14. [Google Scholar] [CrossRef]
- Huang, S.P.; Liu, D.M.; Yao, Y.B.; Gan, Q.; Cai, Y.D.; Xu, L.L. Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing. J. Nat. Gas Sci. Eng. 2017, 43, 69–80. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.Q.; Li, X.; Pan, Z.J. Experimental and modeling study of the stress-dependent permeability of a single fracture in shale under high effective stress. Fuel 2019, 257, 116078. [Google Scholar] [CrossRef]
- Huang, S.P.; Liu, D.M.; Cai, Y.D.; Gan, Q. In-situ stress distribution and its impact on CBM reservoir properties in the Zhengzhuang area, southern Qinshui Basin, North China. J. Nat. Gas Sci. Eng. 2019, 61, 83–96. [Google Scholar] [CrossRef]
- Sun, M.D.; Wen, J.J.; Pan, Z.J.; Liu, B.; Blach, T.P.; Ji, Y.P.; Hu, Q.H.; Yu, B.S.; Wu, C.M.; Ke, Y.B. Pore accessibility by wettable fluids in overmature marine shales of China: Investigations from contrast-matching small-angle neutron scattering (CM-SANS). Int. J. Coal Geol. 2022, 255, 103987. [Google Scholar] [CrossRef]
- Hazra, B.; Vishal, V.; Sethi, C.; Chandra, D. Impact of supercritical CO2 on shale reservoirs and its implication for CO2 sequestration. Energy Fuels 2022, 36, 9882–9903. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Elenius, M.; Skurtveit, E.; Yarushina, V.; Baig, I.; Sundal, A.; Wangen, M.; Landschulze, K.; Kaufmann, R.; Choi, J.C.; Hellevang, H.; et al. Assessment of CO2 storage capacity based on sparse data: Skade Formation. Int. J. Greenh. Gas Control 2018, 79, 252–271. [Google Scholar] [CrossRef]
- van Noort, R.; Yarushina, V. Water, CO2 and argon permeabilities of intact and fractured shale cores under stress. Rock Mech. Rock Eng. 2019, 52, 299–319. [Google Scholar] [CrossRef]
- Peshkov, G.A.; Khakimova, L.A.; Grishko, E.V.; Wangen, M.; Yarushina, V.M. Coupled basin and hydro-mechanical modeling of gas chimney formation: The SW Barents Sea. Energies 2021, 14, 6345. [Google Scholar] [CrossRef]
- Yarushina, V.M.; Wang, L.H.; Connolly, D.; Kocsis, G.; Fæstø, I.; Polteau, S.; Lakhlifi, A. Focused fluid-flow structures potentially caused by solitary porosity waves. Geology 2022, 50, 179–183. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, X.; Liu, M.; Wang, W. Investigation of the effect of natural fractures on multiple shale-gas well performance using non-intrusive EDFM technology. Energies 2019, 12, 932. [Google Scholar]
- Pirzada, M.A.; Bahaaddini, M.; Moradian, O.; Roshan, H. Evolution of contact area and aperture during the shearing process of natural rock fractures. Eng. Geol. 2021, 291, 106236. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.D.; Jiang, Z.X.; Song, Y.; Luo, Q.; Wang, X. Mechanism for the formation of natural fractures and their effects on shale oil accumulation in Junggar Basin, NW China. Int. J. Coal Geol. 2022, 254, 103973. [Google Scholar] [CrossRef]
- Xian, C.; Zhang, J.; Zhao, C.; Wang, G.; Xing, L. Characterizing and modeling multi-scale natural fractures in the Ordovician-Silurian Wufeng-Longmaxi Shale Formation in South Sichuan Basin. In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar]
- Micheal, M.; Xu, W.L.; Xu, H.Y.; Zhang, J.N.; Jin, H.J.; Yu, H.; Wu, H.A. Multi-scale modelling of gas transport and production evaluation in shale reservoir considering crisscrossing fractures. J. Nat. Gas Sci. Eng. 2021, 95, 104156. [Google Scholar] [CrossRef]
- Volatili, T.; Agosta, F.; Cardozo, N.; Zambrano, M.; Lecomte, I.; Tondi, E. Outcrop-scale fracture analysis and seismic modelling of a basin-bounding normal fault in platform carbonates, central Italy. J. Struct. Geol. 2022, 155, 104515. [Google Scholar] [CrossRef]
- Laubach, S.E.; Olson, J.E.; Gale, J.F.W. Are open fractures necessarily aligned with maximum horizontal stress? Earth Planet. Sci. Lett. 2004, 222, 191–195. [Google Scholar] [CrossRef]
- Rajabi, M.; Sherkati, S.; Bohloli, B.; Tingay, M. Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics 2010, 492, 192–200. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; He, Z.L.; Jiang, S.; Lu, S.F.; Xiao, D.S.; Chen, G.H.; Li, Y.C. Fracture types in the lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze. Mar. Pet. Geol. 2019, 99, 282–291. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Tang, J.; Zhou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2016, 190, 370–378. [Google Scholar] [CrossRef]
- Wu, S.T.; Zhai, X.F.; Yang, Z.; Bale, H.; Hong, Y.L.; Cui, J.W.; Pan, S.Q.; Lin, S.H. Characterization of fracture formation in organic-rich shales—An experimental and real time study of the Permian Lucaogou Formation, Junggar Basin, northwestern China. Mar. Pet. Geol. 2019, 107, 397–406. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Zhang, B.; Shu, Z.; Zhang, A.; Wang, Y.; Lu, Y.; Cheng, X.; et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel 2019, 253, 167–179. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Leung, J.Y.; Wojtanowicz, A.K.; Zhang, D. Multiscale characterization of shale pore-fracture system: Geological controls on gas transport and pore size classification in shale reservoirs. J. Pet. Sci. Eng. 2021, 202, 108442. [Google Scholar] [CrossRef]
- Sun, M.D.; Yu, B.S.; Hu, Q.H.; Chen, S.; Xia, W.; Ye, R.C. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the Southeast of Chongqing, China. Int. J. Coal Geol. 2016, 154–155, 16–29. [Google Scholar]
- Sun, M.D.; Zhang, L.H.; Hu, Q.H.; Pan, Z.J.; Yu, B.S.; Sun, L.W.; Bai, L.F.; Fu, H.J.; Zhang, Y.F.; Zhang, C.; et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Pet. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Tan, Y.; Pan, Z.; Liu, J.; Wu, Y.; Haque, A.; Connell, L.D. Experimental study of permeability and its anisotropy for shale fracture supported with proppant. J. Nat. Gas Sci. Eng. 2017, 44, 250–264. [Google Scholar] [CrossRef]
- Bird, M.B.; Butler, S.L.; Hawkes, C.D.; Kotzer, T. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Comput. Geosci. 2014, 73, 6–16. [Google Scholar] [CrossRef]
- He, W.Y.; Bai, X.F.; Meng, Q.A.; Li, J.H.; Zhang, D.Z.; Wang, Y.Z. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin. Acta Pet. Sin. 2022, 43, 885–898. [Google Scholar]
- Erarslan, N.; Liang, Z.Z.; Williams, D.J. Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech. Rock Eng. 2012, 45, 739–751. [Google Scholar] [CrossRef]
- Dutler, N.; Nejati, M.; Valley, B.; Amann, F.; Molinari, G. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks. Eng. Fract. Mech. 2018, 201, 56–79. [Google Scholar] [CrossRef]
- Kaiser, J. Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Arch. Eisenhüttenwesen 1953, 24, 43–45. [Google Scholar] [CrossRef]
- Lehtonen, A.; Cosgrove, J.W.; Hudson, J.A.; Johansson, E. An examination of in situ rock stress estimation using the Kaiser effect. Eng. Geol. 2012, 124, 24–37. [Google Scholar] [CrossRef]
- Hou, Y.D.; Huang, S.P.; Han, J.; Liu, X.B.; Han, L.F.; Fu, C.F. Numerical simulation of the effect of injected CO2 temperature and pressure on CO2-Enhanced coalbed methane. Appl. Sci. 2020, 10, 1385. [Google Scholar]
- Espino, D.M.; Shepherd, D.E.T.; Hukins, D.W.L. Transient large strain contact modelling: A comparison of contact techniques for simultaneous fluid–structure interaction. Eur. J. Mech. B-Fluids 2015, 51, 54–60. [Google Scholar] [CrossRef]
- Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K.; Müller, B.; Reinecker, J.; Reiter, K.; Tingay, M.; Wenzel, F.; Xie, F.; et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 2018, 744, 484–498. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavation in Rock; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Brown, E.T.; Hoek, E. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Geomech. Abstr. 1978, 15, 211–215. [Google Scholar] [CrossRef]
No. | Length (mm) | Diameter (mm) | Weight (g) | Density (g/cm3) |
---|---|---|---|---|
1-1 | 26.02 | 24.68 | 32.21 | 2.59 |
1-2 | 23.98 | 24.02 | 29.58 | 2.72 |
1-3 | 24.55 | 25.54 | 32.54 | 2.59 |
No. | Height (mm) | Diameter (mm) | Thickness (mm) | Prefabricated Crack Length (mm) |
---|---|---|---|---|
2-1 | 38.07 | 76.07 | 23.13 | 19.00 |
2-2 | 39.51 | 75.65 | 23.34 | 19.00 |
2-3 | 36.62 | 75.48 | 23.68 | 19.00 |
No. | σH (MPa) | σH Stress Gradient (MPa/100 m) | σv (MPa) | σv Stress Gradient (MPa/100 m) | σh (MPa) | σh Stress Gradient (MPa/100 m) |
---|---|---|---|---|---|---|
3-1 | 80.99 | 2.69 | 77.29 | 2.57 | 76.64 | 2.55 |
3-2 | 81.61 | 2.71 | 75.64 | 2.51 | 75.31 | 2.50 |
3-3 | 81.03 | 2.69 | 77.56 | 2.57 | 77.32 | 2.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Huang, S.; Wang, X.; Wang, Z.; Wang, Y.; Ma, W.; Zhu, Y.; Sun, M.; Liu, B.; Fu, X.; et al. Microscopic Analysis of Natural Fracture Properties in Organic-Rich Continental Shale Oil Reservoirs: A Case Study from the Lower Jurassic in the Sichuan Basin, China. J. Mar. Sci. Eng. 2023, 11, 1036. https://doi.org/10.3390/jmse11051036
Bai X, Huang S, Wang X, Wang Z, Wang Y, Ma W, Zhu Y, Sun M, Liu B, Fu X, et al. Microscopic Analysis of Natural Fracture Properties in Organic-Rich Continental Shale Oil Reservoirs: A Case Study from the Lower Jurassic in the Sichuan Basin, China. Journal of Marine Science and Engineering. 2023; 11(5):1036. https://doi.org/10.3390/jmse11051036
Chicago/Turabian StyleBai, Xuefeng, Saipeng Huang, Xiandong Wang, Zhiguo Wang, Youzhi Wang, Weiqi Ma, Yanping Zhu, Mengdi Sun, Bo Liu, Xiaofei Fu, and et al. 2023. "Microscopic Analysis of Natural Fracture Properties in Organic-Rich Continental Shale Oil Reservoirs: A Case Study from the Lower Jurassic in the Sichuan Basin, China" Journal of Marine Science and Engineering 11, no. 5: 1036. https://doi.org/10.3390/jmse11051036
APA StyleBai, X., Huang, S., Wang, X., Wang, Z., Wang, Y., Ma, W., Zhu, Y., Sun, M., Liu, B., Fu, X., Cheng, L., Cui, L., & Hou, Y. (2023). Microscopic Analysis of Natural Fracture Properties in Organic-Rich Continental Shale Oil Reservoirs: A Case Study from the Lower Jurassic in the Sichuan Basin, China. Journal of Marine Science and Engineering, 11(5), 1036. https://doi.org/10.3390/jmse11051036