Advanced Marine Craft Model Identification via Multi-Kernel Weighted Least Square Support Vector Machine and Characteristic Model Techniques
Abstract
:1. Introduction
2. Hydrodynamics Models of Marine Crafts
3. CH-Based Data Preprocessing Strategy
4. Model Identification Method Design
- Data collection:
- CH-based interpolation:
- Characteristic model-based identification:
- Strategy validation:
4.1. Conventional LS-SVM Method for Model Identification
4.2. Weighted-LS-SVM Method for Model Identification
4.3. Multi-Kernel-WLS-SVM Method for Model Identification
Algorithm 1: CH-based multi-kernel WLS-SVM |
Input: The heading angle and the rudder angle . |
Output: Identified parameters and prediction accuracy. Begin Step 1. Data preprocessing 1.1. Import the training data to the CH algorithm. 1.2. Obtain the extended matrix of and . Step 2. Parameter identification 2.1. Import the extended matrix of and to the multi-kernel WLS-SVM. 2.2. Hyperparameter selection for for Identify and export the model parameters. end end Step 3. Accuracy evaluation 3.1. Calculate the RMSE according to the model parameters 3.2. if (RMSE is satisfactory) then Export the identified parameters and prediction accuracy. end if End |
5. Numerical Simulation and Experiment Study
5.1. Selection of Marine Craft Motion Model
5.2. Comparison and Analysis of the Conventional LS-SVM Method and the CH-LS-SVM Method
5.3. Validation of CH-WLS-SVM Method Improved by Multi-Kernel Function
5.4. Experimental Study on a Marine Craft
6. Conclusions
7. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shome, S.N.; Nandy, S.; Pal, D.; Das, S.K.; Vadali, S.R.K.; Basu, J.; Ghosh, S. Development of modular shallow water AUV: Issues & trial results. J. Inst. Eng. (India) Ser. C 2012, 93, 217–228. [Google Scholar]
- Morice, C.; Veres, S.; McPhail, S. Terrain referencing for autonomous navigation of underwater vehicles. In Proceedings of the Oceans 2009-Europe, Bremen, Germany, 11–14 May 2009; pp. 1–7. [Google Scholar]
- Allotta, B.; Costanzi, R.; Ridolfi, A.; Salvetti, O.; Reggiannini, M.; Kruusmaa, M.; Salumae, T.; Lane, D.M.; Frost, G.; Tsiogkas, N.; et al. The ARROWS project: Robotic technologies for underwater archaeology. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012088. [Google Scholar] [CrossRef]
- Kimura, R.; Choyekh, M.; Kato, N.; Senga, H.; Suzuki, H.; Ukita, M.; Kamezuka, K. Guidance and control of an autonomous underwater robot for tracking and monitoring spilled plumes of oil and gas from seabed. In Proceedings of the Twenty-third International Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013; pp. 366–371. [Google Scholar]
- Yu, C.; Xiang, X.; Lapierre, L.; Zhang, Q. Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean currents. IEEE J. Ocean. Eng. 2018, 43, 311–322. [Google Scholar] [CrossRef]
- Włodarczyk-Sielicka, M.; Połap, D.; Prokop, K.; Połap, K.; Stateczny, A. Spatial visualization based on geodata fusion using an autonomous unmanned vessel. Remote Sens. 2023, 15, 1763. [Google Scholar] [CrossRef]
- Połap, D.; Wawrzyniak, N.; Włodarczyk-Sielicka, M. Side-scan sonar analysis using ROI analysis and deep neural networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4206108. [Google Scholar] [CrossRef]
- Yu, C.; Zhong, Y.; Lian, L.; Xiang, X. Adaptive simplified surge-heading tracking control for underwater vehicles with thruster’s dead-zone compensation. Nonlinear Dyn. 2023. [Google Scholar] [CrossRef]
- Abkowitz, M.A. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification. SNAME Trans. 1980, 88, 283–318. [Google Scholar]
- Yoshimura, Y. Mathematical model for manoeuvring ship motion (MMG Model). In Proceedings of the Workshop on Mathematical Models for Operations involving Ship-Ship Interaction, Tokyo, Japan, 4–5 August 2005; pp. 1–6. [Google Scholar]
- Nomoto, K.; Taguchi, T.; Honda, K.; Hirano, S. On the steering qualities of ships. Int. Shipbuild. Prog. 1957, 4, 354–370. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Xing, Y. Intelligent control based on intelligent characteristic model and its application. Sci. China Ser. F Inf. Sci. 2003, 46, 225. [Google Scholar] [CrossRef]
- Wen, Y.; Tao, W.; Zhu, M.; Zhou, J.; Xiao, C. Characteristic model-based path following controller design for the unmanned surface vessel. Appl. Ocean Res. 2020, 101, 102293. [Google Scholar] [CrossRef]
- Gokce, M.K.; Kinaci, O.K. Numerical simulations of free roll decay of DTMB 5415. Ocean Eng. 2018, 159, 539–551. [Google Scholar] [CrossRef]
- Perrault, D.; Bose, N.; O’Young, S.; Williams, C.D. Sensitivity of AUV response to variations in hydrodynamic parameters. Ocean Eng. 2003, 30, 779–811. [Google Scholar] [CrossRef]
- Hou, X.; Zou, Z.; Liu, C. Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves. Appl. Ocean Res. 2018, 73, 88–99. [Google Scholar] [CrossRef]
- Holzhüter, T. Robust Identification scheme in an adaptive track-controller for ships. In Adaptive Systems in Control and Signal Processing; Elsevier: Amsterdam, The Netherlands, 1990; pp. 461–466. [Google Scholar]
- Zhong, Y.; Yu, C.; Wang, R.; Pei, T.; Lian, L. Adaptive anti-noise least-squares algorithm for parameter identification of unmanned marine vehicles: Theory, simulation, and experiment. Int. J. Fuzzy Syst. 2023, 25, 369–381. [Google Scholar] [CrossRef]
- Caccia, M.; Indiveri, G.; Veruggio, G. Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE J. Ocean. Eng. 2000, 25, 227–240. [Google Scholar] [CrossRef]
- Yin, J.; Zou, Z.; Xu, F. Parametric identification of Abkowitz model for ship maneuvering motion by using partial least squares regression. J. Offshore Mech. Arct. Eng. 2015, 137, 031301. [Google Scholar]
- Zhong, Y.; Yu, C.; Liu, C.; Liu, T.; Wang, R.; Lian, L. Recursive parameter identification for second-order K-T equations of marine robot in horizontal motion. Indian J. Geo-Mar. Sci. 2021, 50, 890–896. [Google Scholar]
- Sutulo, S.; Guedes Soares, C. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. Ocean Eng. 2014, 79, 10–25. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Liang, C. A novel parameter identification algorithm for 3-DoF ship maneuvering modelling using nonlinear multi-innovation. J. Mar. Sci. Eng. 2022, 10, 581. [Google Scholar] [CrossRef]
- Golub, G.H.; Reinsch, C. Handbook series linear algebra singular value decomposition and least squares solutions. Numer. Math. 1970, 1970, 403–420. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Song, C.; Zhang, X.; Zhang, G. Nonlinear innovation-based maneuverability prediction for marine vehicles using an improved forgetting mechanism. J. Mar. Sci. Eng. 2022, 10, 1210. [Google Scholar] [CrossRef]
- Sabet, M.T.; Daniali, H.M.; Fathi, A.; Alizadeh, E. Identification of an autonomous underwater vehicle hydrodynamic model using the extended, cubature, and transformed unscented kalman filter. IEEE J. Ocean. Eng. 2018, 43, 457–467. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, X.; Zheng, M.; Song, L.; Mao, Y. Parameter identification of unmanned marine vehicle manoeuvring model based on extended Kalman filter and support vector machine. Int. J. Adv. Robot. Syst. 2019, 16, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Y.; Huang, S.; Xue, G.; Jing, Q. Dynamic model identification of ships and wave energy converters based on semi-conjugate linear regression and noisy input Gaussian process. J. Mar. Sci. Eng. 2021, 9, 194. [Google Scholar] [CrossRef]
- Vapnik, V. Universal learning technology: Support vector machines. NEC J. Adv. Technol. 2005, 2, 137–144. [Google Scholar]
- Luo, W.; Zou, Z.; Li, T. Application of support vector machine to ship steering. J. Shanghai Jiaotong Univ. (Sci.) 2009, 14, 462–466. [Google Scholar] [CrossRef]
- Luo, W.; Zou, Z. Parametric identification of ship maneuvering models by using support vector machines. J. Ship Res. 2009, 53, 19–30. [Google Scholar] [CrossRef]
- Pei, T.; Yu, C.; Zhong, Y.; Lian, L. Adaptive event-triggered mechanism-based online system identification framework for marine craft. Ocean Eng. 2023, 278, 114572. [Google Scholar] [CrossRef]
- Xu, H.; Hassani, V.; Guedes Soares, C. Truncated least square support vector machine for parameter estimation of a nonlinear manoeuvring model based on PMM tests. Appl. Ocean Res. 2020, 97, 102076. [Google Scholar] [CrossRef]
- Xu, H.; Hinostroza, M.A.; Wang, Z.; Guedes Soares, C. Experimental investigation of shallow water effect on vessel steering model using system identification method. Ocean Eng. 2020, 199, 106940. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, W.; Hahn, A.; Wen, Y.; Xiao, C.; Tao, W. Adaptive modeling of maritime autonomous surface ships with uncertainty using a weighted LS-SVR robust to outliers. Ocean Eng. 2020, 200, 107053. [Google Scholar] [CrossRef]
- Xiang, G.; Xiang, X. 3D trajectory optimization of the slender body freely falling through water using cuckoo search algorithm. Ocean Eng. 2021, 235, 109354. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Hu, S. Characteristic model-based ship motion mathematical model. Navig. China 2012, 35, 63–65. [Google Scholar]
- Xia, Y.; Xu, K.; Huang, Z.; Wang, W.; Xu, G.; Li, Y. Adaptive energy-efficient tracking control of a X rudder AUV with actuator dynamics and rolling restriction. Appl. Ocean Res. 2022, 118, 102994. [Google Scholar] [CrossRef]
Response Model | Characteristic Model | |
---|---|---|
RMSE (°) | 7.0056 | 2.6748 |
MAE (°) | 6.1386 | 2.6453 |
LS-SVM | CH-LS-SVM | |
---|---|---|
Sampling interval (s) | 0.5 | 0.17 |
RMSE (°) | 2.6798 | 0.2301 |
MAE (°) | 2.6453 | 0.1864 |
CH-LS-SVM (Linear Kernel Function) | CH-WLS-SVM (Linear Kernel Function) | CH-WLS-SVM (Gaussian Kernel Function) | CH-MK-WLS-SVM (Multi-Kernel Function) | |
---|---|---|---|---|
RMSE (°) | 0.2008 | 0.1511 | 0.1432 | 0.0938 |
MAE (°) | 0.1843 | 0.1306 | 0.1203 | 0.0781 |
RMSLE (°) | 0.3539 | 0.2707 | 0.2104 | 0.1655 |
AR2 | 0.9994 | 0.9995 | 0.9995 | 0.9996 |
Description | Value |
---|---|
Length (m) | 0.85 |
Mass (kg) | 7.8 |
Rudder’s area (cm2) | 40 |
Attitude sensor’s resolution (°) | 0.0055 |
Servo’s maximum torque (kg·cm) | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, T.; Yu, C.; Zhong, Y.; Cao, J.; Lian, L. Advanced Marine Craft Model Identification via Multi-Kernel Weighted Least Square Support Vector Machine and Characteristic Model Techniques. J. Mar. Sci. Eng. 2023, 11, 1091. https://doi.org/10.3390/jmse11051091
Pei T, Yu C, Zhong Y, Cao J, Lian L. Advanced Marine Craft Model Identification via Multi-Kernel Weighted Least Square Support Vector Machine and Characteristic Model Techniques. Journal of Marine Science and Engineering. 2023; 11(5):1091. https://doi.org/10.3390/jmse11051091
Chicago/Turabian StylePei, Tianqi, Caoyang Yu, Yiming Zhong, Junjun Cao, and Lian Lian. 2023. "Advanced Marine Craft Model Identification via Multi-Kernel Weighted Least Square Support Vector Machine and Characteristic Model Techniques" Journal of Marine Science and Engineering 11, no. 5: 1091. https://doi.org/10.3390/jmse11051091
APA StylePei, T., Yu, C., Zhong, Y., Cao, J., & Lian, L. (2023). Advanced Marine Craft Model Identification via Multi-Kernel Weighted Least Square Support Vector Machine and Characteristic Model Techniques. Journal of Marine Science and Engineering, 11(5), 1091. https://doi.org/10.3390/jmse11051091