Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment
Abstract
:1. Introduction
- By capturing the non-holonomic nature of USVs and the intricate ocean dynamics, a sophisticated optimization model is carefully devised for the path planning problem, whereby the effects of currents, increments of curvatures, and constraints of physical system are addressed jointly.
- Introducing the random testing initialization algorithm and the adaptive design in the selection procedure, the proposed GA-variant facilitates strong global searching capabilities and a fast convergence rate, thereby contributing to the optimal generation of waypoint sequence.
- Accommodating the non-holonomic constraints, the fast-discrete Clothoid curve is able to preserve and enhance the continuity of the path curve, resulting in robust coordination between the planning and control module.
2. Problem Formulation
2.1. Environment Model
2.2. Currents Model
2.3. USV Model
2.4. Optimization Terms
2.4.1. Cruising Time
2.4.2. Smoothness and Continuity
2.4.3. Path Safety
2.5. Problem Statement
3. Solver Design
3.1. Adaptive-Elite Genetic Algorithm
3.1.1. Chromosome Representation
3.1.2. Initialization
3.1.3. Selection Operator
3.1.4. Hybrid Crossover
3.1.5. Mutation Operator
3.1.6. Fitness Design
3.1.7. Determination of and
3.2. Fast-Discrete Clothoid Curve
- C must lie on the perpendicular bisector between B and D.
- The curvature at each point should vary linearly.
4. Results and Discussion
4.1. Convergence and Quality Test
- In this case, the ocean current is fixed with velocity of 0.3 m/s and direction of −70°.
- Proposed: Population size = 100; generation = 200; ; ; m; m; .395; ; ; ; and .
- Traditional GA: Population size = 100; generation = 200; ; and .
- D* lite: search directions = 8.
- Improved hybrid A*: Minimum turning radius = 4 m; Motion primitive length = 4 m.
- RRT*: Max-iteration = 2500; Max-Connection distance = 1 pixel.
4.2. Testing in USV Model
4.3. Simulation in Time-Vary Ocean Environments
- Environment: map size: 500 * 500, Start = (80, 150), Goal = (480, 330), and the ocean current is set as Equation (27) for Case 1 while we multiply −1 on the component for Case 2.
- Proposed: Population size = 100, generation = 200, , , m, m, .395, , , , and .
- IAFSA: Population size = 100, , ; , and .
- MOEGA: Population size = 100, generation = 200, , , m, m, .395, , and .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; Gu, S.; Wen, Y.; Du, Z.; Xiao, C.; Huang, L.; Zhu, M. The Review Unmanned Surface Vehicle Path Planning: Based on Multi-Modality Constraint. Ocean Eng. 2020, 200, 107043. [Google Scholar] [CrossRef]
- Öztürk, Ü.; Akdağ, M.; Ayabakan, T. A Review of Path Planning Algorithms in Maritime Autonomous Surface Ships: Navigation Safety Perspective. Ocean Eng. 2022, 251, 111010. [Google Scholar] [CrossRef]
- Ai, B.; Jia, M.; Xu, H.; Xu, J.; Wen, Z.; Li, B.; Zhang, D. Coverage Path Planning for Maritime Search and Rescue Using Reinforcement Learning. Ocean Eng. 2021, 241, 110098. [Google Scholar] [CrossRef]
- Fiskin, R.; Atik, O.; Kisi, H.; Nasibov, E.; Johansen, T.A. Fuzzy Domain and Meta-Heuristic Algorithm-Based Collision Avoidance Control for Ships: Experimental Validation in Virtual and Real Environment. Ocean Eng. 2021, 220, 108502. [Google Scholar] [CrossRef]
- Krichen, M. Improving Formal Verification and Testing Techniques for Internet of Things and Smart Cities. Mobile Netw. Appl. 2019. [Google Scholar] [CrossRef]
- Khan, M.A. A Formal Method for Privacy-preservation in Cognitive Smart Cities. Expert Syst. 2022, 39, e12855. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, F.; Bai, Y. Route Planning for Autonomous Vessels Based on Improved Artificial Fish Swarm Algorithm. Ships Offshore Struct. 2022, 18, 897–906. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, Y.; Wang, F.; Bai, J. Path Planning for Autonomous Surface Vessels Based on Improved Artificial Fish Swarm Algorithm: A Further Study. Ships Offshore Struct. 2022. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Abbasi, A.; Yazdani, A.; Wang, H.; Liu, Y. Uninterrupted Path Planning System for Multi-USV Sampling Mission in a Cluttered Ocean Environment. Ocean Eng. 2022, 254, 111328. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H. Dynamics-Constrained Global-Local Hybrid Path Planning of an Autonomous Surface Vehicle. IEEE Trans. Veh. Technol. 2020, 69, 6928–6942. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y. A Time Dimension-Added Multiple Obstacles Avoidance Approach for Unmanned Surface Vehicles. Ocean Eng. 2022, 252, 111201. [Google Scholar] [CrossRef]
- Yu, J.; Liu, G.; Xu, J.; Zhao, Z.; Chen, Z.; Yang, M.; Wang, X.; Bai, Y. A Hybrid Multi-Target Path Planning Algorithm for Unmanned Cruise Ship in an Unknown Obstacle Environment. Sensors 2022, 22, 2429. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Liu, Y.; Bucknall, R. Smoothed A* Algorithm for Practical Unmanned Surface Vehicle Path Planning. Appl. Ocean Res. 2019, 83, 9–20. [Google Scholar] [CrossRef]
- Shah, B.C.; Gupta, S.K. Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment. IEEE J. Ocean. Eng. 2020, 45, 813–830. [Google Scholar] [CrossRef]
- Xie, L.; Xue, S.; Zhang, J.; Zhang, M.; Tian, W.; Haugen, S. A Path Planning Approach Based on Multi-Direction A* Algorithm for Ships Navigating within Wind Farm Waters. Ocean Eng. 2019, 184, 311–322. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, X.; Li, M.; Yu, K.; Chen, Z.; Ni, C.; Teng, Y. Path Planning Method Based on D* Lite Algorithm for Unmanned Surface Vehicles in Complex Environments. China Ocean Eng. 2021, 35, 372–383. [Google Scholar] [CrossRef]
- Lyridis, D.V. An Improved Ant Colony Optimization Algorithm for Unmanned Surface Vehicle Local Path Planning with Multi-Modality Constraints. Ocean Eng. 2021, 241, 109890. [Google Scholar] [CrossRef]
- Guo, X.; Ji, M.; Zhao, Z.; Wen, D.; Zhang, W. Global Path Planning and Multi-Objective Path Control for Unmanned Surface Vehicle Based on Modified Particle Swarm Optimization (PSO) Algorithm. Ocean Eng. 2020, 216, 107693. [Google Scholar] [CrossRef]
- Hao, K.; Zhao, J.; Li, Z.; Liu, Y.; Zhao, L. Dynamic Path Planning of a Three-Dimensional Underwater AUV Based on an Adaptive Genetic Algorithm. Ocean Eng. 2022, 263, 112421. [Google Scholar] [CrossRef]
- Krell, E.; King, S.A.; Garcia Carrillo, L.R. Autonomous Surface Vehicle Energy-Efficient and Reward-Based Path Planning Using Particle Swarm Optimization and Visibility Graphs. Appl. Ocean Res. 2022, 122, 103125. [Google Scholar] [CrossRef]
- Xue, H. A Quasi-Reflection Based SC-PSO for Ship Path Planning with Grounding Avoidance. Ocean Eng. 2022, 247, 110772. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Han, X. Route Planning and Track Keeping Control for Ships Based on the Leader-Vertex Ant Colony and Nonlinear Feedback Algorithms. Appl. Ocean Res. 2020, 101, 102239. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, L.; Bai, Y. Path Planning For Unmanned Surface Vehicles Based On Modified Artificial Fish Swarm Algorithm With Local Optimizer. Math. Probl. Eng. 2022, 2022, 1283374. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, M.; Yan, X. Multi-Objective Path Planning for Unmanned Surface Vehicle with Currents Effects. ISA Trans. 2018, 75, 137–156. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Ahn, C.K.; Xu, Q. Autonomous Pilot of Unmanned Surface Vehicles: Bridging Path Planning and Tracking. IEEE Trans. Veh. Technol. 2022, 71, 2358–2374. [Google Scholar] [CrossRef]
- Meng, J.; Liu, Y.; Bucknall, R.; Guo, W.; Ji, Z. Anisotropic GPMP2: A Fast Continuous-Time Gaussian Processes Based Motion Planner for Unmanned Surface Vehicles in Environments With Ocean Currents. IEEE Trans. Automat. Sci. Eng. 2022, 19, 3914–3931. [Google Scholar] [CrossRef]
- Liu, Y.; Bucknall, R.; Zhang, X. The Fast Marching Method Based Intelligent Navigation of an Unmanned Surface Vehicle. Ocean Eng. 2017, 142, 363–376. [Google Scholar] [CrossRef]
- Liu, Y.; Bucknall, R. The Angle Guidance Path Planning Algorithms for Unmanned Surface Vehicle Formations by Using the Fast Marching Method. Appl. Ocean Res. 2016, 59, 327–344. [Google Scholar] [CrossRef]
- Petereit, J.; Emter, T.; Frey, C.W.; Kopfstedt, T.; Beutel, A. Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments. In Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 1–6. [Google Scholar]
- Karaman, S.; Frazzoli, E. Sampling-Based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Liu, J.; Anavatti, S.; Garratt, M.; Abbass, H.A. Modified Continuous Ant Colony Optimisation for Multiple Unmanned Ground Vehicle Path Planning. Expert Syst. Appl. 2022, 196, 116605. [Google Scholar] [CrossRef]
- Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-Objective Multi-Robot Path Planning in Continuous Environment Using an Enhanced Genetic Algorithm. Expert Syst. Appl. 2019, 115, 106–120. [Google Scholar] [CrossRef]
- Alvarez, A.; Caiti, A.; Onken, R. Evolutionary Path Planning for Autonomous Underwater Vehicles in a Variable Ocean. IEEE J. Ocean. Eng. 2004, 29, 418–429. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, Y.; Paik, J.K. Global-Local Hierarchical Path Planning Scheme for Unmanned Surface Vehicles under Dynamically Unforeseen Environments. Ocean. Eng. 2023, 280, 114750. [Google Scholar] [CrossRef]
Map Size | Start | Destination | |
---|---|---|---|
Scenario 1 | 300 × 400 | (150, 300) | (200, 90) |
Scenario 2 | 300 × 400 | (50, 330) | (250, 250) |
Scenario 3 | 400 × 400 | (290, 350) | (390, 60) |
Scenario 4 | 400 × 400 | (150, 240) | (350, 120) |
Methods | Performance | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|---|
Proposed | Time (s) | 0.360 | 0.613 | 0.484 | 0.391 |
Time SD (s) | 0.012 | 0.022 | 0.022 | 0.008 | |
AVG length (pixels) | 253.880 | 354.020 | 358.460 | 300.210 | |
Minimum length (pixels) | 253.500 | 352.000 | 356.000 | 298.000 | |
GA | Time (s) | 0.905 | 1.113 | 1.132 | 1.179 |
Time SD (s) | 0.068 | 0.074 | 0.102 | 0.115 | |
AVG length (pixels) | 273.590 | 373.000 | 368.490 | 395.340 | |
Minimum length (pixels) | 251.000 | 348.000 | 353.500 | 296.500 | |
D* lite | Time (s) | 3.789 | 14.946 | 2.589 | 3.683 |
Time SD (s) | 0.155 | 0.603 | 0.037 | 0.064 | |
AVG length (pixels) | 253.296 | 356.718 | 353.480 | 299.841 | |
Minimum length (pixels) | 253.296 | 356.718 | 353.480 | 299.841 | |
Hybrid A* | Time (s) | 4.731 | 1.093 | 9.127 | 3.612 |
Time SD (s) | 0.096 | 0.035 | 0.376 | 0.065 | |
AVG length (pixels) | 253.676 | 351.758 | 369.485 | 303.112 | |
Minimum length (pixels) | 253.676 | 351.758 | 369.485 | 303.112 | |
RRT* | Time (s) | 0.449 | 1.906 | 1.571 | 3.346 |
Time SD (s) | 0.171 | 0.457 | 0.552 | 1.309 | |
AVG length (pixels) | 324.637 | 487.845 | 497.646 | 458.019 | |
Minimum length (pixels) | 287.810 | 403.188 | 413.889 | 358.982 |
Methods | Performance | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|---|
Proposed | 1 (m) | 12.649 (◯) | 11.663 (◯) | 10.557 (◯) | 5.000 (◯) |
Smoothness (deg) | 174.547 | 149.454 | 129.088 | 211.538 | |
GA | (m) | 1.000 (✕) | 1.414 (✕) | 1.414 (✕) | 5.099 (◯) |
Smoothness (deg) | 590.291 | 343.702 | 528.768 | 227.737 | |
D* lite | (m) | 1.000 (✕) | 1.000 (✕) | 1.000 (✕) | 0 (✕) |
Smoothness (deg) | 945 | 720 | 720 | 450 | |
Hybrid A* | (m) | 1.000 (✕) | 1.000 (✕) | 0 (✕) | 1.000 (✕) |
Smoothness (deg) | 1223 | 1404 | 1912 | 1263 | |
RRT* | (m) | 1.414 (✕) | 1.000 (✕) | 5.831(◯) | 2.236 (✕) |
Smoothness (deg) | 303.395 | 555.388 | 426.283 | 762.342 |
Inertial Related | Value | Damping Related | Value |
---|---|---|---|
85.28 | −77.55 | ||
162.50 | −0.02 | ||
41.45 | −41.45 |
Proposed | GA | RRT* | ||||
---|---|---|---|---|---|---|
Energy cost (kJ) | Time cost (s) | Energy cost (kJ) | Time cost (s) | Energy cost (kJ) | Time cost (s) | |
Scenario 1 | 27.4 | 194.8 | 29.8 | 219.9 | 42.7 | 349.9 |
Scenario 2 | 36.8 | 298.9 | 39.1 | 310.0 | 94.0 | 849.6 |
Scenario 3 | 37.4 | 266.6 | 39.6 | 289.8 | 65.8 | 530.0 |
Scenario 4 | 31.7 | 246.9 | 35.0 | 285.0 | 82.4 | 708.9 |
Indicators | Proposed | IAFSA | MOEGA | |
---|---|---|---|---|
Case 1 | Distance (m) | 458.166 | 471.691 | 483.598 |
(s) | 209.198 | 214.430 | 221.039 | |
(deg) | 123.130 | 212.378 | 145.872 | |
(m) | 18.682 | 5.000 | 16.279 | |
Case 2 | Distance (m) | 540.065 | 543.593 | 566.971 |
(s) | 245.489 | 254.095 | 257.724 | |
(deg) | 155.034 | 164.404 | 228.242 | |
(m) | 8.062 | 18.934 | 17.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Bai, Y.; Zhao, L. Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment. J. Mar. Sci. Eng. 2023, 11, 1164. https://doi.org/10.3390/jmse11061164
Wang F, Bai Y, Zhao L. Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment. Journal of Marine Science and Engineering. 2023; 11(6):1164. https://doi.org/10.3390/jmse11061164
Chicago/Turabian StyleWang, Fang, Yong Bai, and Liang Zhao. 2023. "Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment" Journal of Marine Science and Engineering 11, no. 6: 1164. https://doi.org/10.3390/jmse11061164
APA StyleWang, F., Bai, Y., & Zhao, L. (2023). Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment. Journal of Marine Science and Engineering, 11(6), 1164. https://doi.org/10.3390/jmse11061164