Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction
Abstract
:1. Introduction
2. Literature Review
3. Problem Description
3.1. Problem Description
3.2. Fule Consumption and Carbon Emission
3.3. Recovery Strategies
4. Model Formulation
4.1. Assumptions
4.2. Symbol Specification
4.3. Mixed Integer Nonlinear Programming Model
5. Hybrid Evolutionary Algorithm
- (1)
- Chromosome Encoding
- (2)
- Initial Population Generation
- (3)
- Fitness Calculation
- (4)
- Elitist Selection
- (5)
- Crossover and Mutation
- (6)
- Large neighborhood search
6. Numerical Experiments
6.1. Study Case
6.2. Optimization Results
6.3. Algorithm Comparison Results
6.4. Sensitivity Analyses
6.4.1. Impact of the Recovery Strategy Combination
6.4.2. Impact of the Port Disruption Duration
6.4.3. Impact of the Port Disruption Position
6.4.4. Impact of Carbon Tax Prices
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Guo, J.; Zhao, S. Vessel scheduling for container liner shipping considering imbalance cargo flow. J. Dalian Marit. Univ. 2022, 48, 48–56. [Google Scholar]
- International Maritime Organization (IMO). Initial IMO GHG Strategy. 2019. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 10 November 2022).
- De, A.; Wang, J.; Tiwari, M. Fuel bunker management strategies within sustainable container shipping operation considering disruption and recovery policies. IEEE Trans. Eng. Manag. 2019, 68, 1089–1111. [Google Scholar] [CrossRef] [Green Version]
- Xchange. How Slow Steaming Impacts Shippers and Carriers. 2019. Available online: https://www.container-xchange.com/blog/slow-steaming/ (accessed on 10 November 2022).
- Chou, C.; Hsu, H.; Wang, C.; Yang, T. Analysis of energy efficiencies of in-port ferries and island passenger-ships and improvement policies to reduce CO2 emissions. Mar. Pollut. Bull. 2021, 172, 112826. [Google Scholar] [CrossRef]
- Achurra-Gonzalez, P.; Novati, M.; Foulser-Piggott, R.; Graham, D.; Bowman, G.; Bell, M.; Angeloudis, P. Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application. Accid. Anal. Prev. 2019, 123, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepte, K.; Rice, J. An initial exploration of port capacity bottlenecks in the USA port system and the implications on resilience. Int. J. Shipp. 2014, 6, 339–355. [Google Scholar] [CrossRef] [Green Version]
- Elmi, Z.; Singh, P.; Meriga, V.; Goniewicz, K.; Borowska-Stefanska, M.; Wisniewski, S.; Dulebenets, M. Uncertainties in Liner Shipping and Ship Schedule Recovery: A State-of-the-Art Review. J. Mar. Sci. Eng. 2022, 10, 563. [Google Scholar] [CrossRef]
- Cheraghchi, F.; Abualhaol, I.; Falcon, R.; Abielmona, R.; Raahemi, B.; Petriu, E. Modeling the speed-based vessel schedule recovery problem using evolutionary multiobjective optimization. Inf. Sci. 2018, 448, 53–74. [Google Scholar] [CrossRef]
- Song, D. A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities. Logistics 2021, 5, 41. [Google Scholar] [CrossRef]
- Cao, X.; Lam, J. Simulation-based severe weather-induced container terminal economic loss estimation. Marit. Policy Manag. 2019, 46, 92–116. [Google Scholar] [CrossRef]
- Brouer, B.; Desaulniers, G.; Pisinger, D. A matheuristic for the liner shipping network design problem. Transp. Res. E Logist. 2014, 72, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Xin, X.; Li, C.; Liu, Y.; Chen, K. Container ocean shipping network design considering carbon tax and choice inertia of cargo owners. Ocean Coast. Manag. 2022, 216, 105986. [Google Scholar] [CrossRef]
- Zheng, J.; Ma, Y.; Ji, X.; Chen, J. Is the weekly service frequency constraint tight when optimizing ship speeds and fleet size for a liner shipping service? Ocean Coast. Manag. 2021, 212, 105815. [Google Scholar] [CrossRef]
- Wang, S.; Meng, Q.; Liu, Z. Containership scheduling with transit-time container shipment demand. Transp. Res. B Meth. 2013, 54, 68–83. [Google Scholar] [CrossRef]
- Lai, X.; Wu, L.; Wang, K.; Wang, F. Robust ship fleet deployment with shipping revenue management. Transp. Res. B Meth. 2022, 161, 169–196. [Google Scholar] [CrossRef]
- Dulebenets, M. A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping. Int. J. Prod. Econ. 2018, 196, 293–318. [Google Scholar] [CrossRef]
- Ozcan, S.; Eliiyi, D.; Reinhardt, L. Cargo Allocation and Vessel Scheduling on Liner Shipping with Synchronization of Transshipments. Appl. Math. Model. 2020, 77, 235–252. [Google Scholar] [CrossRef]
- Zhang, A.; Zheng, Z.; Teo, C. Schedule reliability in liner shipping timetable design: A convex programming approach. Transp. Res. B Meth. 2022, 155, 499–525. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.; Hu, Y. Optimization of liner ship speed and route schedule based on a probabilistic tabu search algorithm. Ind. Eng. Manag. 2022, 27, 3651–3668. [Google Scholar]
- Li, D.; Yang, H.; Zhao, S.; Zheng, J. Joint Optimization of vessel scheduling and refueling for container liner shipping in emission control areas. J. Transp. Syst. Eng. Inf. Technol. 2022, 22, 273–281+310. [Google Scholar]
- Koza, D.; Desaulniers, G.; Ropke, S. Integrated Liner Shipping Network Design and Scheduling. Transp. Sci. 2020, 54, 512–533. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Tan, Y.; Guan, X. Hub-and-spoke network design for container shipping considering disruption and congestion in the post COVID-19 era. Ocean Coast. Manag. 2022, 225, 106230. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Zhen, L.; Laporte, G.; Tan, Z.; Wang, K. How to operate ship fleets under uncertainty. Prod. Oper. Manag. 2023, 1–19. [Google Scholar] [CrossRef]
- Tierney, K.; Ehmke, J.; Campbell, A.; Muller, D. Liner shipping single service design problem with arrival time service levels. Flex. Serv. Manuf. J. 2019, 31, 620–652. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E. Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Psaraftis, H.; Kontovas, C. Balancing the economic and environmental performance of maritime transportation. Transp. Res. D Transp. Environ. 2010, 15, 458–462. [Google Scholar] [CrossRef]
- Cheaitou, A.; Cariou, P. Greening of maritime transportation: A multi-objective optimization approach. Ann. Oper. Res. 2019, 273, 501–525. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Ch, F.; Zhu, M.; Zheng, F. Liner ship bunkering and sailing speed planning with uncertain demand. J. Comput. 2020, 39, 22. [Google Scholar] [CrossRef]
- Tran, N.; Lam, J. Effects of container ship speed on CO2 emission, cargo lead time and supply chain costs. Res. Transp. Bus. 2022, 43, 100723. [Google Scholar] [CrossRef]
- Pierre, C.; Francesco, P.; Theo, N. Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping. Int. J. Prod. Econ. 2019, 208, 17–28. [Google Scholar]
- Pasha, J.; Dulebenets, M.; Fathollahi-Fard, A.; Tian, G.; Lau, Y.; Singh, P.; Liang, B. An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations. Adv. Eng. Inform. 2021, 48, 101299. [Google Scholar] [CrossRef]
- Reinhardt, L.; Pisinger, D.; Sigurd, M.; Ahmt, J. Speed optimizations for liner networks with business constraints. Eur. J. Oper. Res. 2020, 285, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Zhen, L.; Wu, Y.; Wang, S.; Laporte, G. Green technology adoption for fleet deployment in a shipping network. Transp. Res. B Meth. 2020, 139, 388–410. [Google Scholar] [CrossRef]
- Meng, L.; Kang, Q.; Han, C.; Zhou, M. Determining the optimal location of terror response facilities under the risk of disruption. IEEE Trans. Intell. Transp. Syst. 2018, 19, 476–486. [Google Scholar] [CrossRef]
- Hu, S.; Han, C.; Dong, Z.; Meng, L. A multi-stage stochastic programming model for relief distribution considering the state of road network. Transp. Res. B Meth. 2019, 123, 64–87. [Google Scholar] [CrossRef]
- Meng, L.; He, J.; Hu, S.; Han, C. Strategic reliable supply chain network design: Determining tradeoffs between cost and risk. Int. J. Prod. Res. 2023, 61, 3621–3633. [Google Scholar] [CrossRef]
- Abioye, O.; Dulebenets, M.; Pasha, J.; Kavoosi, M. A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas. Energies 2019, 12, 2380. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, T.; Zheng, H. Multi-stage rescheduling method of liner considering severe weather. Int. J. Comput. Appl. 2021, 41, 286–294. [Google Scholar]
- Abioye, O.; Dulebenets, M.; Kavoosi, M.; Pasha, J.; Theophilus, O. Vessel schedule recovery in liner shipping: Modeling alternative recovery options. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6420–6434. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, X.; Xu, X. Multi-objective optimization of liner transportation under COVID-19 and dual carbon strategy background. J. Dalian Marit. Univ. 2022, 48, 31–41. [Google Scholar]
- Lee, C.; Song, D. Ocean container transport in global supply chains: Overview and research opportunities. Transp. Res. Part B Methodol. 2017, 95, 442–474. [Google Scholar] [CrossRef]
- Li, L.; Xiong, X.; Yuan, H. Ships’ response strategies to port disruptions caused by hurricanes. Ocean Coast. Manag. 2022, 227, 106275. [Google Scholar] [CrossRef]
- Zheng, J.; Mao, C.; Zhang, Q. Hybrid dynamic modeling and receding horizon speed optimization for liner shipping operations from schedule reliability and energy efficiency perspectives. Front. Mar. Sci. 2023, 10, 1095283. [Google Scholar] [CrossRef]
- Brouer, B.; Karsten, C.; Pisinger, D. Optimization in liner shipping. Ann. Oper. Res. 2018, 271, 105–236. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Ng, S.; Lee, L. A study on bunker fuel management for the shipping liner services. Comput. Oper. Res. 2012, 39, 1160–1172. [Google Scholar] [CrossRef]
- Corbett, J.; Wang, H.; Winebrake, J. The effectiveness and costs of speed reductions on emissions from international shipping. Transp. Res. D Transp. Environ. 2009, 14, 593–598. [Google Scholar] [CrossRef]
- Ronen, D. The effect of oil price on the optimal speed of ships. J. Oper. Res. Soc. 1982, 33, 1035–1040. [Google Scholar] [CrossRef]
- Fagerholt, K.; Laporte, G.; Norstad, I. Reducing fuel emissions by optimizing speed on shipping routes. J. Oper. Res. Soc. 2009, 61, 523–529. [Google Scholar] [CrossRef]
- Klaus, B.; Tore, G.; Hans-Jürgen, S. A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem. Transp. Sci. 2000, 34, 364–380. [Google Scholar]
- Zhen, L.; Hu, Z.; Yan, R.; Zhuge, D.; Wang, S. Route and speed optimization for liner ships under emission control policies. Transp. Res. Part C Emerg. Technol. 2020, 110, 330–345. [Google Scholar] [CrossRef]
Port Congestion Coefficient | Chartering Costs (CNY/nmi·h) | Vessel Waiting Costs (CNY/h) | Delay Costs (CNY/TEU·h) |
0.2 | 1.5 | 312.5 | 12.5 |
Heavy Oil Price (CNY/ton) | Light Oil Price (CNY/ton) | Container Delay Cost (CNY/TEU·h) | Carbon Tax Price (CNY/ton) |
730 | 2018 | 10.5 | 1500 |
Vessel Number | Heavy Oil Consumption (ton/day) | Light Oil Consumption (ton/day) | Fuel Coefficient | Economic Speed (nmi/h) | Maximum Speed (nmi/h) | Transportation Cost (CNY/nmi) | Capacity (TEU) | Departure Port |
---|---|---|---|---|---|---|---|---|
A | 0.10 | 0.08 | 0.015 | 12 | 14 | 170 | 1200 | Dandong |
B | 0.05 | 0.07 | 0.014 | 11 | 13 | 150 | 2500 | Dalian |
C | 0.04 | 0.06 | 0.012 | 12 | 14 | 170 | 3000 | Qingdao |
D | 0.10 | 0.08 | 0.015 | 11 | 13 | 150 | 1700 | Rizhao |
E | 0.05 | 0.07 | 0.014 | 12 | 14 | 170 | 2000 | Yantai |
F | 0.04 | 0.06 | 0.012 | 12 | 14 | 170 | 2900 | Tianjin |
G | 0.10 | 0.08 | 0.015 | 11 | 13 | 150 | 1800 | Yingkou |
H | 0.05 | 0.07 | 0.014 | 12 | 14 | 170 | 1500 | Jinzhou |
Port Number | Port Name | Port Toll (CNY) | Port Number | Port Name | Port Toll (CNY) | Port Number | Port Name | Port Toll (CNY) |
---|---|---|---|---|---|---|---|---|
1 | Dandong | 7500 | 7 | Qingdao | 25,000 | 13 | Wenzhou | 11,000 |
2 | Jinzhou | 8000 | 8 | Rizhao | 11,000 | 14 | Fuqing | 10,000 |
3 | Yingkou | 15,000 | 9 | Lianyungang | 7500 | 15 | Quanzhou | 9800 |
4 | Dalian | 20,000 | 10 | Shanghai | 30,000 | 16 | Xiamen | 14,000 |
5 | Tianjin | 23,000 | 11 | Taicang | 8000 | 17 | Guangzhou | 24,000 |
6 | Yantai | 9500 | 12 | Ningbo | 8500 | - | - | - |
Route Number | Port Sequence and Shipping Schedule | |||||
---|---|---|---|---|---|---|
1 | Dandong (6.1) | Dalian (6.3) | Lianyungang (6.6) | Ningbo (6.9) | Shanghai (6.11) | Dandong (6.15) |
2 | Dalian (6.1) | Dandong (6.3) | Shanghai (6.6) | Xiamen (6.9) | Qingdao (6.13) | Dalian (6.15) |
3 | Qingdao (6.1) | Rizhao (6.2) | Wenzhou (6.6) | Xiamen (6.10) | Shanghai (6.12) | Qingdao (6.15) |
4 | Rizhao (6.1) | Taicang (6.3) | Fuqing (6.7) | Guangzhou (6.10) | Quanzhou (6.13) | Rizhao (6.18) |
5 | Yantai (6.1) | Shanghai (6.4) | Quanzhou (6.7) | Guangzhou (6.10) | Qingdao (6.15) | Yantai (6.17) |
6 | Tianjin (6.1) | Ningbo (6.5) | Shanghai (6.7) | Xiamen (6.10) | Quanzhou (6.11) | Tianjin (6.16) |
7 | Yingkou (6.1) | Fuqing (6.6) | Xiamen (6.8) | Wenzhou (6.11) | Lianyungang (6.14) | Yingkou (6.17) |
8 | Jinzhou (6.1) | Yingkou (6.2) | Taicang (6.6) | Xiamen (6.9) | Rizhao (6.13) | Jinzhou (6.16) |
Freight Number | Volume (TEU) | Loading Port | Time Window (h) | Unloading Port | Time Window (h) | Freight Number | Volume (TEU) | Loading Port | Time Window (h) | Unloading Port | Time Window (h) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 650 | Dandong | [1, 2] | Lianyungang | [6, 8] | 17 | 900 | Qingdao | [1, 2] | Wenzhou | [6, 8] |
2 | 500 | Dalian | [3, 4] | Lianyungang | [6, 8] | 18 | 1600 | Xiamen | [10, 11] | Qingdao | [15, 17] |
3 | 340 | Ningbo | [9, 11] | Dandong | [15, 17] | 19 | 810 | Shanghai | [12, 14] | Qingdao | [15, 17] |
4 | 750 | Shanghai | [11, 13] | Dandong | [15, 17] | 20 | 1660 | Rizhao | [2, 4] | Wenzhou | [6, 8] |
5 | 660 | Yantai | [1, 2] | Quanzhou | [7, 9] | 21 | 1350 | Rizhao | [1, 2] | Fuqing | [7, 9] |
6 | 200 | Yantai | [1, 2] | Guangzhou | [10, 12] | 22 | 350 | Taicang | [3, 5] | Fuqing | [7, 9] |
7 | 500 | Shanghai | [4, 6] | Qingdao | [15, 17] | 23 | 700 | Guangzhou | [10, 12] | Rizhao | [18, 20] |
8 | 350 | Shanghai | [4, 6] | Yantai | [17, 19] | 24 | 550 | Quanzhou | [13, 15] | Rizhao | [18, 20] |
9 | 1600 | Yingkou | [1, 2] | Fuqing | [5, 7] | 25 | 1400 | Dalian | [1, 2] | Shanghai | [6, 8] |
10 | 200 | Yingkou | [1, 2] | Xiamen | [8, 10] | 26 | 650 | Dandong | [3, 4] | Shanghai | [6, 8] |
11 | 500 | Wenzhou | [9, 11] | Lianyungang | [12, 14] | 27 | 300 | Xiamen | [9, 10] | Qingdao | [13, 15] |
12 | 1020 | Wenzhou | [9, 11] | Yingkou | [15, 17] | 28 | 600 | Xiamen | [9, 10] | Dalian | [15, 18] |
13 | 1020 | Tianjin | [1, 2] | Shanghai | [7, 9] | 29 | 250 | Yingkou | [2, 4] | Taicang | [5, 7] |
14 | 450 | Tianjin | [1, 2] | Xiamen | [10, 12] | 30 | 1250 | Jinzhou | [1, 2] | Taicang | [5, 7] |
15 | 800 | Ningbo | [5, 7] | Shanghai | [7, 9] | 31 | 470 | Xiamen | [8, 10] | Rizhao | [12, 14] |
16 | 550 | Quanzhou | [11, 13] | Tianjin | [16, 18] | 32 | 700 | Xiamen | [8, 10] | Jinzhou | [15, 17] |
Port | Dandong | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jinzhou | 318 | Jinzhou | |||||||||||||||
Yingkou | 314 | 82 | Yingkou | ||||||||||||||
Dalian | 137 | 202 | 197 | Dalian | |||||||||||||
Tianjin | 326 | 235 | 230 | 210 | Tianjin | ||||||||||||
Yantai | 187 | 207 | 200 | 90 | 204 | Yantai | |||||||||||
Qingdao | 324 | 414 | 409 | 266 | 323 | 155 | Qingdao | ||||||||||
Rizhao | 374 | 476 | 470 | 325 | 496 | 256 | 67 | Rizhao | |||||||||
Lianyungang | 397 | 492 | 487 | 343 | 508 | 323 | 101 | 183 | Lianyungang | ||||||||
Shanghai | 592 | 694 | 681 | 547 | 701 | 508 | 393 | 403 | 412 | Shanghai | |||||||
Taicang | 609 | 713 | 701 | 566 | 722 | 548 | 390 | 315 | 419 | 27 | Taicang | ||||||
Ningbo | 618 | 732 | 724 | 587 | 736 | 571 | 435 | 400 | 497 | 172 | 171 | Ningbo | |||||
Wenzhou | 762 | 864 | 855 | 744 | 878 | 690 | 568 | 541 | 596 | 313 | 319 | 235 | Wenzhou | ||||
Fuqing | 989 | 1100 | 1005 | 935 | 1100 | 873 | 790 | 793 | 612 | 467 | 351 | 389 | 196 | Fuqing | |||
Quanzhou | 1014 | 1111 | 1089 | 964 | 1108 | 912 | 806 | 791 | 780 | 508 | 535 | 413 | 274 | 157 | Quanzhou | ||
Xiamen | 1045 | 1157 | 1142 | 1005 | 1155 | 967 | 869 | 867 | 857 | 572 | 584 | 470 | 326 | 203 | 76 | Xiamen | |
Guangzhou | 1361 | 1465 | 1455 | 1315 | 1475 | 1293 | 1174 | 1159 | 1157 | 894 | 910 | 782 | 643 | 553 | 390 | 364 | Guangzhou |
Vessel | Actual Liner Scheduling Plan and Cargo Transportation Plan Speed (nmi/h); Handling Capacity (TEU); Arrival Time (h) |
---|---|
A | Dandong (12, 650, 1)—Dalian (12, 500, 3)—Lianyungang (12, −1150, 6)—Ningbo (12, 340, 9) —Shanghai (12, 750, 11)—Dandong (12, −1090, 15) |
B | Dalian (11, 1400, 1)—Dandong (11, 650, 3)—Shanghai (11, −2050, 6)—Xiamen (11, 900, 9) —Qingdao (11, −300, 13)—Dalian (11, −600, 15) |
C | Qingdao (12, 900, 1)—Rizhao (12, 1660, 2)—Wenzhou (12, −2560, 6)—Xiamen (12, 1600, 10) —Shanghai (12, 810, 12)—Qingdao (12, −2410, 15) |
D | Rizhao (11, 1350, 1)—Taicang (11, 350, 3)—Fuqing (11, −1700, 7)—GuangZhou (11, 700, 10) —Quanzhou (11, 550, 13)—Rizhao (11, −1250, 18) |
E | Yantai (12, 860, 1)—Shanghai (12, 850, 4)—Quanzhou (12, −660, 7)—GuangZhou (12, −200, 10) —Qingdao (12, −500, 15)—Yantai (12, −350, 17) |
F | Tianjin (12, 1470, 1)—Ningbo (12, 800, 5)—Shanghai (12, −1820, 7)—Xiamen (12, −450, 10) —Quanzhou (12, 550, 11)—Tianjin (12, −550, 16) |
G | Yingkou (11, 1800, 1)—Fuqing (11, −1600, 6)—Xiamen (11, −200, 8)—Wenzhou (11, 1520, 11) —Lianyungang (11, −500, 14)—Yingkou (11, −1020, 17) |
H | Jinzhou (12, 1250, 1)—Yingkou (12, 250, 2)—Taicang (12, −1500, 6)—Xiamen (12, 1170, 9) —Rizhao (12, −470, 13)—Jinzhou (12, −700, 16) |
Vessel | Actual Liner Scheduling Plan and Cargo Transportation Plan Speed (nmi/h); Handling Capacity (TEU); Arrival Time (h) |
---|---|
A | Dandong (12, 650, 1)—Dalian (12, 500, 3)—Lianyungang (12, −1150, 6)—Ningbo (12, 340, 9) —Shanghai (12, 750, 11)—Dandong (12, −1090, 15) |
B | Dalian (11, 1400, 1)—Dandong (11, 650, 3)—Shanghai (11, −2050, 6)—Xiamen (11, 900, 9)— Qingdao (11, −300, 13)—Dalian (11, −600, 15) |
C | Qingdao (12, 900, 1)—Rizhao (12, 1660, 2)—Wenzhou (12, −2560, 6)—Xiamen (12, 1600, 10) —Shanghai (12, 810, 12)—Qingdao ( (12, −2410, 15) |
D | Rizhao (11, 1350, 1)—Taicang (11, 350, 3)—Fuqing (11, −1700, 7)—GuangZhou (11, 700, 10) —Quanzhou (11, 550, 13)—Rizhao (11, −1250, 18) |
E | Yantai (12, 860, 1)—Shanghai (12, 850, 4)—Quanzhou (12, −660, 7) —GuangZhou (12, −200, 10)—Qingdao (12, −500, 15)—Yantai (12, −350, 17) |
F | Tianjin (12, 1470, 1)—Ningbo (12, 800, 5)—Shanghai (12, −1820, 7)—Xiamen (12, −450, 10) —Quanzhou (12, 550, 11)—Tianjin (12, −550, 16) |
G | Yingkou (14, 1800, 1)—Fuqing (11, −1600, 7)—Xiamen (11, −200, 8)—Wenzhou (11, 1520, 11) —Lianyungang (11, −500, 14)—Yingkou (11, −1020, 17) |
H | Jinzhou (12, 1250, 1)—Taicang (12, −1250, 5)—Xiamen (12, 1170, 8)—Rizhao (12, −470, 12) —Jinzhou (12, −700, 15) |
H * | Yingkou (12, 250, 3)—Taicang (12, −250, 7) |
Route Number | Carbon Emission (ton) | |||||
---|---|---|---|---|---|---|
1 | 0.00 | 43.12 | 213.29 | 169.50 | 54.07 | 185.45 |
2 | 0.00 | 32.84 | 141.20 | 275.76 | 207.17 | 63.56 |
3 | 0.00 | 77.47 | 189.20 | 187.29 | 137.05 | 94.22 |
4 | 0.00 | 117.61 | 137.30 | 149.44 | 105.47 | 213.64 |
5 | 0.00 | 202.00 | 239.73 | 109.21 | 328.33 | 290.16 |
6 | 0.00 | 178.20 | 41.35 | 277.01 | 283.19 | 265.28 |
7 | 0.00 | 299.96 | 173.71 | 88.20 | 161.04 | 131.63 |
8 | 0.00 | 38.50 | 204.80 | 250.07 | 242.53 | 133.25 |
Case | Port | Vessel | Hybrid Evolutionary Algorithm | Tabu Search Algorithm | Ant Colony Algorithm | |||
---|---|---|---|---|---|---|---|---|
Number | Number | Target Value (CNY) | Solution Time (s) | Target Value (CNY) | Solution Time (s) | Target Value (CNY) | Solution Time (s) | |
1 | 6 | 3 | 1,552,517 | 55.4 | 1,873,891 | 17.5 | 1,890,053 | 15.75 |
2 | 7 | 3 | 1,827,840 | 72.4 | 1,900,925 | 26.4 | 1,902,052 | 23.76 |
3 | 8 | 4 | 1,965,380 | 90.1 | 2,143,815 | 38.4 | 2,128,649 | 34.56 |
4 | 9 | 4 | 2,040,326 | 131.4 | 2,201,070 | 58.4 | 2,381,674 | 52.56 |
5 | 10 | 5 | 2,230,213 | 176.5 | 2,485,201 | 80.1 | 2,682,195 | 72.09 |
6 | 11 | 5 | 2,494,489 | 220.1 | 2,776,155 | 120.3 | 2,805,767 | 108.27 |
7 | 12 | 6 | 2,794,412 | 280.3 | 2,995,117 | 155.2 | 3,082,436 | 139.68 |
8 | 13 | 6 | 2,954,465 | 322.7 | 3,140,512 | 208.5 | 3,357,096 | 187.65 |
9 | 14 | 7 | 3,235,214 | 396.7 | 3,624,834 | 262.6 | 3,622,315 | 236.34 |
10 | 15 | 7 | 3,409,822 | 457.3 | 3,801,107 | 331.5 | 3,889,642 | 298.35 |
11 | 16 | 8 | 3,593,767 | 534.7 | 4,154,133 | 407.4 | 4,130,074 | 366.66 |
12 | 17 | 8 | 3,779,723 | 609.8 | 4,236,458 | 491.3 | 4,416,745 | 442.17 |
Case | Port Number | Vessel Number | Plan 1 | Plan 2 | Gap (%) |
---|---|---|---|---|---|
Target Value (CNY) | Target Value (CNY) | ||||
1 | 6 | 3 | 1,552,517 | 1,656,448 | 6.69 |
2 | 7 | 3 | 1,827,840 | 1,924,827 | 5.31 |
3 | 8 | 4 | 1,965,380 | 2,061,192 | 4.87 |
4 | 9 | 4 | 2,040,326 | 2,148,023 | 5.28 |
5 | 10 | 5 | 2,230,213 | 2,348,696 | 5.31 |
6 | 11 | 5 | 2,494,489 | 2,609,566 | 4.61 |
7 | 12 | 6 | 2,794,412 | 2,941,405 | 5.26 |
8 | 13 | 6 | 2,954,465 | 3,109,820 | 5.26 |
9 | 14 | 7 | 3,235,214 | 3,403,899 | 5.21 |
10 | 15 | 7 | 3,409,822 | 3,613,779 | 5.98 |
11 | 16 | 8 | 3,593,767 | 3,784,918 | 5.32 |
12 | 17 | 8 | 3,779,723 | 3,999,804 | 5.82 |
Case | Normal Operating Cost (CNY) | Port 2 Disruption | Port 3 Disruption | Port 4 Disruption | Port 5 Disruption | ||||
---|---|---|---|---|---|---|---|---|---|
Total Cost (CNY) | GAP2 (%) | Total Cost (CNY) | GAP3 (%) | Total Cost (CNY) | GAP4 (%) | Total Cost (CNY) | GAP5 (%) | ||
1 | 289,920 | 318,320 | 9.80 | 326,020 | 12.45 | 327,720 | 13.04 | 319,060 | 10.05 |
2 | 275,670 | 297,200 | 7.81 | 304,010 | 10.28 | 307,240 | 11.45 | 300,540 | 9.02 |
3 | 254,670 | 271,940 | 6.78 | 313,630 | 23.15 | 300,740 | 18.09 | 287,220 | 12.78 |
4 | 265,370 | 283,980 | 7.01 | 324,200 | 22.17 | 318,790 | 20.13 | 306,070 | 15.34 |
5 | 287,890 | 307,240 | 6.72 | 316,740 | 10.02 | 323,760 | 12.46 | 331,480 | 15.14 |
6 | 307,890 | 324,020 | 5.24 | 344,160 | 11.78 | 343,480 | 11.56 | 351,700 | 14.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Wang, X.; Jin, J.; Han, C. Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction. J. Mar. Sci. Eng. 2023, 11, 1449. https://doi.org/10.3390/jmse11071449
Meng L, Wang X, Jin J, Han C. Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction. Journal of Marine Science and Engineering. 2023; 11(7):1449. https://doi.org/10.3390/jmse11071449
Chicago/Turabian StyleMeng, Lingpeng, Xudong Wang, Jie Jin, and Chuanfeng Han. 2023. "Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction" Journal of Marine Science and Engineering 11, no. 7: 1449. https://doi.org/10.3390/jmse11071449
APA StyleMeng, L., Wang, X., Jin, J., & Han, C. (2023). Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction. Journal of Marine Science and Engineering, 11(7), 1449. https://doi.org/10.3390/jmse11071449