Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Oscillations of Isopycnals in the Permanent Pycnocline and Their Correlation with Alongshore Current Dynamics Based on Aqualog Data
3.2. Oscillations of Isotherms in the Seasonal Thermocline and Their Correlation with Alongshore Current Dynamics Based on Deep ADCP and Thermochain Data
3.3. Oscillations of Isotherms in the Seasonal Thermocline and Their Correlation with Alongshore Current Dynamics Based on Nearshore ADCP and Thermochain Data
4. Discussion
5. Conclusions
- Based on the long-term measurements of current velocity and CTD data by bottom-anchored stations on the shelf and upper part of the continental slope of the northeastern Black Sea, it was found that vertical oscillations of isopycnals in the permanent pycnocline and isotherms in the seasonal thermocline (upwellings and downwellings) on a synoptic time scale (5–15 days) are caused primarily by geostrophic adjustment of density and velocity fields. At the same time, quasi-geostrophic oscillations of the alongshore current velocity in the shelf–slope area are caused by the baroclinic instability of the Rim Current, its meandering, and the formation of mesoscale eddies.
- Statistically significant linear correlations of vertical oscillations of isotherms and isopycnals from the alongshore current velocity were discovered, which make it possible to estimate the magnitude of upwellings and downwellings in the shelf–slope area of the northeastern Black Sea using long-term measurements of current velocity profiles.
- Typical periods of synoptic oscillations of isopycnals in the pycnocline on the upper part of continental slope (250 m depth) are about 9 days, and their typical amplitudes are 22 m. Oscillations of isotherms in the seasonal thermocline on the outer shelf (86 m depth) have almost the same period but the average amplitude is half as large. On the inner shelf (26 m depth), the average isotherm oscillation amplitude and period are even smaller: about 6 m and 7 days, respectively, due to ageostrophic effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekman, V.W. On the influence of the Earth’s rotation on ocean-currents. Ark. Foer Mat. Astron. Och Fys. 1905, 2, 1–53. [Google Scholar]
- Gill, A.E.; Clarke, A.J. Wind-induced upwelling, coastal currents, and sea-level changes. Deep-Sea Res. 1974, 21, 325–345. [Google Scholar] [CrossRef]
- Yentsch, C.S. The influence of geostrophy on primary production. Tethys 1974, 6, 111–118. [Google Scholar]
- Kämpf, J.; Chapman, P. Upwelling Systems of the World; Springer International Publishing: Cham, Switzerland, 2016; p. 433. [Google Scholar]
- Stanichnaya, R.R.; Stanichny, S.V. Black Sea upwellings. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2021, 18, 195–207. (In Russian) [Google Scholar] [CrossRef]
- Gawarkiewicz, G.; Korotaev, G.; Stanichny, S.; Repetin, L.; Soloviev, D. Synoptic upwelling and cross-shelf transport processes along the Crimean coast of the Black Sea. Cont. Shelf Res. 1999, 19, 977–1005. [Google Scholar] [CrossRef]
- Zhurbas, V.; Oh, I.S.; Park, T. Formation and decay of a longshore baroclinic jet associated with transient coastal upwelling and downwelling: A numerical study with applications to the Baltic Sea. J. Geophys. Res. 2006, 111, C04014. [Google Scholar] [CrossRef]
- García-Reyes, M.; Sydeman, W.J.; Schoeman, D.S.; Rykaczewski, R.R.; Black, B.A.; Smit, A.J.; Bograd, S.J. Under Pressure: Climate Change, Upwelling, and Eastern Boundary Upwelling Ecosystems. Front. Mar. Sci. 2015, 2, 109. [Google Scholar] [CrossRef]
- Sur, H.I.; Ozsoy, E.; Ilyin, Y.P.; Unluata, U. Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts. J. Mar. Syst. 1996, 7, 293–320. [Google Scholar] [CrossRef]
- Freon, P.; Barrange, M.; Aristegni, J. Eastern boundary upwelling ecosystems: Integrative and comparative approaches. Prog. Oceanogr. 2009, 83, 1–14. [Google Scholar] [CrossRef]
- Blatov, A.S.; Bulgakov, N.P.; Ivanov, V.A.; Kosarev, A.N.; Tujilkin, V.S. Variability of Hydrophysical Fields in the Black Sea; Gidrometeoizdat: Leningrad, Russia, 1984; p. 240. (In Russian) [Google Scholar]
- Oguz, T.; La Violette, P.E.; Unluata, U. The upper layer circulation of the Black Sea: Its variability as inferred from hydrographic and satellite observations. J. Geophys. Res. Oceans 1992, 97, 12569–12584. [Google Scholar] [CrossRef]
- Besiktepe, S.T.; Lozano, C.J.; Robinson, A.R. On the summer mesoscale variability of the Black Sea. J. Mar. Res. 2001, 59, 475–515. [Google Scholar] [CrossRef]
- Titov, V.B. Circulation and vertical structure of currents in the eastern part of the Black Sea. Oceanology 1980, 20, 425–431. (In Russian) [Google Scholar]
- Oguz, T.; Latun, V.S.; Latif, M.A.; Vladimirov, V.V.; Sur, H.I.; Markov, A.A.; Özsoy, E.; Kotovshchinnikov, B.B.; Eremeyev, V.V.; Ünlüata, Ü. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Res. I Ocean. Res. Papers 1993, 40, 1597–1612. [Google Scholar] [CrossRef]
- Oguz, T.; Besiktepe, S. Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep Sea Res. I Ocean. Res. Papers 1999, 46, 1733–1753. [Google Scholar] [CrossRef]
- Sapozhnikov, V.V. Biohydrochemical barrier along the border of shelf waters of the Black Sea. Oceanology 1991, 31, 417–423. [Google Scholar]
- Zhurbas, V.M.; Zatsepin, A.G.; Grigor’eva, Y.V.; Eremeev, V.N.; Kremenetsky, V.V.; Motyzhev, S.V.; Poyarkov, S.G.; Poulain, P.M.; Stanichny, S.V.; Soloviev, D.M. Water Circulation and Characteristics of Currents of Different Scales in the Upper Layer of the Black Sea from Drifter Data. Oceanology 2004, 44, 30–43. [Google Scholar]
- Stanev, E.V. On the mechanisms of the Black Sea circulation. Earth-Sci. Rev. 1990, 28, 285–319. [Google Scholar] [CrossRef]
- Korotaev, G.; Oguz, T.; Nikiforov, A.; Koblinsky, C. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J. Geophys. Res. 2003, 108, 3122. [Google Scholar] [CrossRef]
- Sur, H.I.; Ozsoy, E.; Unluata, U. Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea. Prog. Oceanogr. 1994, 33, 249–302. [Google Scholar] [CrossRef]
- Titov, V.B. Characteristics of the Main Black Sea Current and near-shore anticyclonic eddies in the Russian sector of the Black Sea. Oceanology 2002, 42, 637–645. [Google Scholar]
- Sokolova, E.; Stanev, E.V.; Yakubenko, V.; Ovchinnikov, I.; Kos’yan, R. Synoptic variability in the Black Sea. Analysis of hydrographic survey and altimeter data. J. Mar. Syst. 2001, 31, 45–63. [Google Scholar] [CrossRef]
- Staneva, J.; Dietrich, D.; Stanev, E.; Bowman, M. Rim Current and coastal eddy mechanisms in an eddy resolving general circulation model. J. Mar. Syst. 2001, 31, 137–158. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostyanoy, A.G.; Soloviev, D.M.; Stanichny, S.V. Satellite monitoring of eddies and jets in the northeastern Black Sea. Mapp. Sci. Remote Sens. 2001, 38, 21–35. [Google Scholar] [CrossRef]
- Ovchinnikov, I.M.; Titov, V.B. Anticyclonic vorticity of the currents in the coastal zone of the Black Sea. Proc. USSR Acad. Sci. 1990, 314, 1236–1239. (In Russian) [Google Scholar]
- Demyshev, S.G.; Dymova, O.A. Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone. Izv. Atmos. Ocean. Phys. 2013, 49, 603–610. [Google Scholar] [CrossRef]
- Korotenko, K.; Osadchiev, A.; Melnikov, V. Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations. Remote Sens. 2022, 14, 4149. [Google Scholar] [CrossRef]
- Morozov, A.N.; Zatsepin, A.G.; Kuklev, S.B.; Ostrovskii, A.G.; Fedorov, S.V. Vertical structure of the currents in upper part of the Black Sea continental slope near Gelendzhik city. Izv. Atmos. Ocean. Phys. 2017, 6, 718–727. [Google Scholar]
- Zatsepin, A.G.; Ostrovskii, A.G.; Kremenetskiy, V.V.; Piotukh, V.B.; Kuklev, S.B.; Moskalenko, L.V.; Podymov, O.I.; Baranov, V.I.; Korzh, A.O.; Stanichny, S.V. On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012. Izv. Atmos. Ocean. Phys. 2013, 49, 659–673. [Google Scholar] [CrossRef]
- Silvestrova, K.P.; Zatsepin, A.G.; Myslenkov, S.A. Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics. Oceanology 2017, 57, 469–477. [Google Scholar] [CrossRef]
- Abramov, A.A.; Blatov, A.S.; Ul’yanova, V.I. Barotropic-Baroclinic Instability of the Main Black Sea Flow and Eddy Formation in the Black Sea. Izv. Akad. Nauk. SSSR Fiz. Atmos. I Okeana 1981, 17, 974–981. (In Russian) [Google Scholar]
- Kubryakov, A.A.; Stanichny, S.V. Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 2015, 55, 56–67. [Google Scholar] [CrossRef]
- Akima, H. Algorithm 526: Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points. ACM Trans. Math. Softw. 1978, 4, 160–164. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Piotouh, V.B.; Korzh, A.O.; Kukleva, O.N.; Soloviev, D.M. Variability of currents in the coastal zone of the Black Sea from long-term measurements with a bottom mounted ADCP. Oceanology 2012, 52, 579–592. [Google Scholar] [CrossRef]
- Murray, J.W.; Codispoti, L.A.; Friederich, G.E. The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecies Process; Advances in Chemistry Series No. 244; Huang, C.P., O’Melia, R., Morgan, J.J., Eds.; American Chemical Society: Washington, DC, USA, 1995; pp. 157–176. ISBN 0-8412-2921-X. [Google Scholar]
- Morozov, A.N.; Lemeshko, E.M.; Shutov, S.A.; Zima, V.V.; Deryushkin, D.V. Structure of the Black Sea currents based on the results of the ladcp observations in 2004–2014. Phys. Ocean. 2017, 1, 25–40. [Google Scholar]
- Chu, J.W.F.; Curkan, C.; Tunnicliffe, V. Drivers of temporal beta diversity of a benthic community in a seasonally hypoxic fjord. R. Soc. Open Sci. 2018, 5, 172284. [Google Scholar] [CrossRef] [PubMed]
- Villnäs, A.; Norkko, J.; Hietanen, S.; Josefson, A.; Lukkari, K.; Norkko, A. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 2013, 94, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Kolyuchkina, G.A.; Syomin, V.L.; Simakova, U.V.; Sergeeva, N.G.; Ananiev, R.A.; Dmitrevsky, N.N.; Lyubimov, I.V.; Zenina, M.A.; Podymov, O.I.; Basin, A.B.; et al. Benthic community structure near the margin of the oxic zone: A case study on the Black Sea. J. Mar. Syst. 2022, 227, 103691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podymov, O.I.; Ocherednik, V.V.; Silvestrova, K.P.; Zatsepin, A.G. Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea. J. Mar. Sci. Eng. 2023, 11, 1628. https://doi.org/10.3390/jmse11081628
Podymov OI, Ocherednik VV, Silvestrova KP, Zatsepin AG. Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea. Journal of Marine Science and Engineering. 2023; 11(8):1628. https://doi.org/10.3390/jmse11081628
Chicago/Turabian StylePodymov, Oleg I., Vladimir V. Ocherednik, Ksenia P. Silvestrova, and Andrei G. Zatsepin. 2023. "Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea" Journal of Marine Science and Engineering 11, no. 8: 1628. https://doi.org/10.3390/jmse11081628
APA StylePodymov, O. I., Ocherednik, V. V., Silvestrova, K. P., & Zatsepin, A. G. (2023). Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea. Journal of Marine Science and Engineering, 11(8), 1628. https://doi.org/10.3390/jmse11081628