Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Sea Surface Temperature (SST)
2.2. Wind Components
2.3. Precipitation and Temperature
2.4. Root Zone Soil Moisture (RZSM)
2.5. SIF
Data | Source | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|---|
Sea surface temperature (SST) | NOAA PSL | 0.25° × 0.25° | Monthly | [83] |
Wind components at 850 hPa | ERA 5 | 0.25° × 0.25° | Monthly | [63] |
Precipitation | IMD | 0.25° × 0.25° | Daily | [65] |
Surface air temperature (T2m) | IMD | 1.0° × 1.0° | Daily | [66] |
Root sone soil moisture (RZSM) | GLEAM 3.8a | 0.25° × 0.25° | Monthly | [71] |
Solar-Induced chlorophyll Fluorescence (SIF) | GOSIF v2 | 0.05° × 0.05° | Monthly | [75] |
3. Methodology
3.1. Computation of SST Anomalies and Drought Variables
3.2. Wind Speed Visualization
3.3. Measurement of NINO 3.4 and DMI
4. Results
4.1. Seasonal SST Variations
4.2. Long-Term Variations in Average SST Anomalies in the WIO, CIO, and NIO
4.3. SST Anomalies in the Indian Ocean vis-à-vis ENSO Phases and the IOD
4.4. Wind Speed in the Indian Ocean vis-à-vis ENSO Phases and the IOD
4.5. Response of Drought Variables
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMD | India Meteorological Department |
GLEAM | Global Land Evaporation Amsterdam Model |
SST | Sea Surface Temperature |
SIF | Solar-induced chlorophyll Fluorescence |
ENSO | El Niño Southern Oscillation |
WIO | Western Indian Ocean |
NIO | Northern Indian Ocean |
CIO | Central Indian Ocean |
IOD | Indian Ocean Dipole |
DMI | Dipole Mode Index |
Appendix A
References
- Gonsamo, A.; Chen, J.M.; Lombardozzi, D. Global Vegetation Productivity Response to Climatic Oscillations during the Satellite Era. Glob. Chang. Biol. 2016, 22, 3414–3426. [Google Scholar] [CrossRef] [PubMed]
- O’carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Phillips, H.E.; Tandon, A.; Furue, R.; Hood, R.; Ummenhofer, C.C.; Benthuysen, J.A.; Menezes, V.; Hu, S.; Webber, B.; Sanchez-Franks, A. Progress in Understanding of Indian Ocean Circulation, Variability, Air–Sea Exchange, and Impacts on Biogeochemistry. Ocean Sci. 2021, 17, 1677–1751. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Afflerbach, J.; O’Hara, C.; Katona, S.; Stewart Lowndes, J.S.; Jiang, N.; Pacheco, E.; Scarborough, C.; Polsenberg, J. Drivers and Implications of Change in Global Ocean Health over the Past Five Years. PLoS ONE 2017, 12, e0178267. [Google Scholar] [CrossRef] [PubMed]
- Reimer, J.J.; Vargas, R.; Rivas, D.; Gaxiola-Castro, G.; Hernandez-Ayon, J.M.; Lara-Lara, R. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current. PLoS ONE 2015, 10, e0125177. [Google Scholar] [CrossRef]
- Chen, M.; Parton, W.J.; Del Grosso, S.J.; Hartman, M.D.; Day, K.A.; Tucker, C.J.; Derner, J.D.; Knapp, A.K.; Smith, W.K.; Ojima, D.S. The Signature of Sea Surface Temperature Anomalies on the Dynamics of Semiarid Grassland Productivity. Ecosphere 2017, 8, e02069. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Xu, Y.; Bastos, A.; Ciais, P.; Peng, S. The Effects of Teleconnections on Carbon Fluxes of Global Terrestrial Ecosystems. Geophys. Res. Lett. 2017, 44, 3209–3218. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Kim, J.; Joiner, J.; Zeng, N.; Jiang, F.; Wang, H.; He, W.; Wu, M.; Chen, T. Modulation of Land Photosynthesis by the Indian Ocean Dipole: Satellite-based Observations and CMIP6 Future Projections. Earth’s Futur. 2021, 9, e2020EF001942. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. A Look at the Relationship between the ENSO and the Indian Ocean Dipole. J. Meteorol. Soc. Japan. Ser. II 2003, 81, 41–56. [Google Scholar] [CrossRef]
- Devi, K.N.; Sarangi, R.K. Time-Series Analysis of Chlorophyll-a, Sea Surface Temperature, and Sea Surface Height Anomalies during 2003–2014 with Special Reference to El Niño, La Niña, and Indian Ocean Dipole (IOD) Years. Int. J. Remote Sens. 2017, 38, 5626–5639. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Influence of the Indian Ocean Dipole on the Australian Winter Rainfall. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Saji, N.H.; Yamagata, T. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim. 2004, 17, 3141–3155. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and Its Possible Teleconnection. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Slingo, J.M.; Annamalai, H. 1997: The El Niño of the Century and the Response of the Indian Summer Monsoon. Mon. Weather Rev. 2000, 128, 1778–1797. [Google Scholar] [CrossRef]
- Lau, N.-C.; Nath, M.J. Impact of ENSO on the Variability of the Asian–Australian Monsoons as Simulated in GCM Experiments. J. Clim. 2000, 13, 4287–4309. [Google Scholar] [CrossRef]
- Annamalai, H.; Liu, P. Response of the Asian Summer Monsoon to Changes in El Niño Properties. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 805–831. [Google Scholar] [CrossRef]
- Mishra, V.; Smoliak, B.V.; Lettenmaier, D.P.; Wallace, J.M. A Prominent Pattern of Year-to-Year Variability in Indian Summer Monsoon Rainfall. Proc. Natl. Acad. Sci. USA 2012, 109, 7213–7217. [Google Scholar] [CrossRef]
- Ashok, K.; Tejavath, C.T. The Indian Summer Monsoon Rainfall and ENSO. Mausam 2019, 70, 443–452. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Gupta, A.S.; Li, Y.; Taschetto, A.S.; England, M.H. Multi-Decadal Modulation of the El Niño–Indian Monsoon Relationship by Indian Ocean Variability. Environ. Res. Lett. 2011, 6, 34006. [Google Scholar] [CrossRef]
- Joseph, S.; Sahai, A.K.; Chattopadhyay, R.; Goswami, B.N. Can El Niño–Southern Oscillation (ENSO) Events Modulate Intraseasonal Oscillations of Indian Summer Monsoon? J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Power, S.B.; Smith, I.N. Weakening of the Walker Circulation and Apparent Dominance of El Niño Both Reach Record Levels, but Has ENSO Really Changed? Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Stachnik, J.P.; Schumacher, C. A Comparison of the Hadley Circulation in Modern Reanalyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Ashok, K.; Saji, N.H. On the Impacts of ENSO and Indian Ocean Dipole Events on Sub-Regional Indian Summer Monsoon Rainfall. Nat. Hazards 2007, 42, 273–285. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Y.; Jin, F.; Stuecker, M.F.; Turner, A.G. Impact of Different El Niño Types on the El Niño/IOD Relationship. Geophys. Res. Lett. 2015, 42, 8570–8576. [Google Scholar] [CrossRef]
- Han, W.; Vialard, J.; McPhaden, M.J.; Lee, T.; Masumoto, Y.; Feng, M.; De Ruijter, W.P.M. Indian Ocean Decadal Variability: A Review. Bull. Am. Meteorol. Soc. 2014, 95, 1679–1703. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef]
- Yamagata, T.; Behera, S.K.; Luo, J.-J.; Masson, S.; Jury, M.R.; Rao, S.A. Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. Earth’s Clim. Ocean. Interact. Geophys. Monogr 2004, 147, 189–212. [Google Scholar]
- Luo, J.-J.; Zhang, R.; Behera, S.K.; Masumoto, Y.; Jin, F.-F.; Lukas, R.; Yamagata, T. Interaction between El Nino and Extreme Indian Ocean Dipole. J. Clim. 2010, 23, 726–742. [Google Scholar] [CrossRef]
- Behera, S.K.; Luo, J.-J.; Masson, S.; Delecluse, P.; Gualdi, S.; Navarra, A.; Yamagata, T. Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study. J. Clim. 2005, 18, 4514–4530. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K. Unravelling the Teleconnections between ENSO and Dry/Wet Conditions over India Using Nonlinear Granger Causality. Atmos. Res. 2021, 247, 105168. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, P.; Dubey, A.K.; Jha, S.K.; Sein, D.V.; Cabos, W. Demonstrating the Asymmetry of the Indian Ocean Dipole Response in Regional Earth System Model of CORDEX-SA. Atmos. Res. 2022, 273, 106182. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T. Structure of SST and Surface Wind Variability during Indian Ocean Dipole Mode Events: COADS Observations. J. Clim. 2003, 16, 2735–2751. [Google Scholar] [CrossRef]
- Mishra, V.; Tiwari, A.D.; Aadhar, S.; Shah, R.; Xiao, M.; Pai, D.S.; Lettenmaier, D. Drought and Famine in India, 1870–2016. Geophys. Res. Lett. 2019, 46, 2075–2083. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Shukla, J. Intraseasonal and Interannual Variability of Rainfall over India. J. Clim. 2000, 13, 4366–4377. [Google Scholar] [CrossRef]
- Parthasarathy, B.; Munot, A.A.; Kothawale, D.R. All-India Monthly and Seasonal Rainfall Series: 1871–1993. Theor. Appl. Climatol. 1994, 49, 217–224. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing Trend of Extreme Rain Events over India in a Warming Environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian Subcontinent by Rapid Indian Ocean Warming and a Weakening Land-Sea Thermal Gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed Changes in Extreme Wet and Dry Spells during the South Asian Summer Monsoon Season. Nat. Clim. Chang. 2014, 4, 456–461. [Google Scholar] [CrossRef]
- Niranjan Kumar, K.; Rajeevan, M.; Pai, D.S.; Srivastava, A.K.; Preethi, B. On the Observed Variability of Monsoon Droughts over India. Weather Clim. Extrem. 2013, 1, 42–50. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate Change and the South Asian Summer Monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Furtado, J.C.; Mishra, V.; Xiao, X.; Randall, R.M. Global Distribution, Trends, and Drivers of Flash Drought Occurrence. Nat. Commun. 2021, 12, 6330. [Google Scholar] [CrossRef] [PubMed]
- Orth, R.; Seneviratne, S.I. Variability of Soil Moisture and Sea Surface Temperatures Similarly Important for Warm-Season Land Climate in the Community Earth System Model. J. Clim. 2017, 30, 2141–2162. [Google Scholar] [CrossRef]
- Yan, B.; Mao, J.; Shi, X.; Hoffman, F.M.; Notaro, M.; Zhou, T.; Mcdowell, N.; Dickinson, R.E.; Xu, M.; Gu, L. Predictability of Tropical Vegetation Greenness Using Sea Surface Temperatures. Environ. Res. Commun. 2019, 1, 31003. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Z.; Wang, S.; Gu, F.; Gong, H.; Hao, M.; Shao, Y. Global Vegetation Productivity Responses to the West Pacific Warm Pool. Sci. Total Environ. 2019, 655, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Asoka, A.; Mishra, V. Prediction of Vegetation Anomalies to Improve Food Security and Water Management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, M.K. Assessment of Ecosystem Resilience to Hydroclimatic Disturbances in India. Glob. Chang. Biol. 2018, 24, e432–e441. [Google Scholar] [CrossRef]
- Nayak, R.K.; Patel, N.R.; Dadhwal, V.K. Inter-annual Variability and Climate Control of Terrestrial Net Primary Productivity over India. Int. J. Climatol. 2013, 33, 132–142. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Tao, B.; Ren, W.; Pan, S.; Dangal, S.; Yang, J. Terrestrial Net Primary Productivity in India during 1901–2010: Contributions from Multiple Environmental Changes. Clim. Chang. 2015, 132, 575–588. [Google Scholar] [CrossRef]
- Bala, G.; Joshi, J.; Chaturvedi, R.K.; Gangamani, H.V.; Hashimoto, H.; Nemani, R. Trends and Variability of AVHRR-Derived NPP in India. Remote Sens. 2013, 5, 810–829. [Google Scholar] [CrossRef]
- Rao, A.S.; Bala, G.; Ravindranath, N.H.; Nemani, R. Multi-Model Assessment of Trends, Variability and Drivers of Terrestrial Carbon Uptake in India. J. Earth Syst. Sci. 2019, 128, 99. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Wardlow, B.D.; Bayissa, Y.A.; Tadesse, T.; Svoboda, M.D.; Gedam, S.S. Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sens. 2020, 12, 2091. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, V.; Shekh, A.M.; Lunagaria, M.M.; Patel, H.R. The Impact of El Nino and La Nina (ENSO) on Monsoon Rainfall in Gujarat. J. Agrometeorol. 2012, 14, 151–156. [Google Scholar]
- Kim, I.-W.; Stuecker, M.F.; Timmermann, A.; Zeller, E.; Kug, J.-S.; Park, S.-W.; Kim, J.-S. Tropical Indo-Pacific SST Influences on Vegetation Variability in Eastern Africa. Sci. Rep. 2021, 11, 10462. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Fensholt, R. Analysis of Teleconnections between AVHRR-Based Sea Surface Temperature and Vegetation Productivity in the Semi-Arid Sahel. Remote Sens. Environ. 2011, 115, 3276–3285. [Google Scholar] [CrossRef]
- Roxy, M. Sensitivity of Precipitation to Sea Surface Temperature over the Tropical Summer Monsoon Region—And Its Quantification. Clim. Dyn. 2014, 43, 1159–1169. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A Long-Term Record of Blended Satellite and in Situ Sea-Surface Temperature for Climate Monitoring, Modeling and Environmental Studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef]
- Wilson, S.S.; Joseph, P.V.; Mohanakumar, K.; Johannessen, O.M. Interannual and Long Term Variability of Low Level Jetstream of the Asian Summer Monsoon. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Nandini, G.; Vinoj, V.; Pandey, S.K. Arabian Sea Aerosol-Indian Summer Monsoon Rainfall Relationship and Its Modulation by El-Nino Southern Oscillation. Npj Clim. Atmos. Sci. 2022, 5, 25. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm. In Spatial Statistics and Models; Gaile, G.L., Willmott, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 133–145. ISBN 978-94-017-3048-8. [Google Scholar]
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a New High Spatial Resolution (0.25 × 0.25) Long Period (1901–2010) Daily Gridded Rainfall Data Set over India and Its Comparison with Existing Data Sets over the Region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a High Resolution Daily Gridded Temperature Data Set (1969–2005) for the Indian Region. Atmos. Sci. Lett. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Pai, D.S.; Sridhar, L.; Badwaik, M.R.; Rajeevan, M. Analysis of the Daily Rainfall Events over India Using a New Long Period (1901–2010) High Resolution (0.25° × 0.25°) Gridded Rainfall Data Set. Clim. Dyn. 2015, 45, 755–776. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Drought Onset and Termination in India. J. Geophys. Res. Atmos. 2020, 125, e2020JD032871. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, V. Decline in Surface Urban Heat Island Intensity in India during Heatwaves. Environ. Res. Commun. 2019, 1, 31001. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ines, A.V.M.; Das, N.N.; Khedun, P. Anatomy of a Local Scale Drought. In Proceedings of the AGU Fall Meeting Abstracts; AGU: Washington, DC, USA, 2014; p. H31M-06. [Google Scholar]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N.E.C. Improving Terrestrial Evaporation Estimates over Continental Australia through Assimilation of SMOS Soil Moisture. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 146–162. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Qiu, R.; Han, G.; Ma, X.; Xu, H.; Shi, T.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Xu, S.; Atherton, J.; Riikonen, A.; Zhang, C.; Oivukkamäki, J.; MacArthur, A.; Honkavaara, E.; Hakala, T.; Koivumäki, N.; Liu, Z. Structural and Photosynthetic Dynamics Mediate the Response of SIF to Water Stress in a Potato Crop. Remote Sens. Environ. 2021, 263, 112555. [Google Scholar] [CrossRef]
- Siegmann, B.; Cendrero-Mateo, M.P.; Cogliati, S.; Damm, A.; Gamon, J.; Herrera, D.; Jedmowski, C.; Junker-Frohn, L.V.; Kraska, T.; Muller, O. Downscaling of Far-Red Solar-Induced Chlorophyll Fluorescence of Different Crops from Canopy to Leaf Level Using a Diurnal Data Set Acquired by the Airborne Imaging Spectrometer HyPlant. Remote Sens. Environ. 2021, 264, 112609. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, X.; He, B.; Arain, M.A.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I. Solar-induced Chlorophyll Fluorescence Exhibits a Universal Relationship with Gross Primary Productivity across a Wide Variety of Biomes. Glob. Chang. Biol. 2019, 25, e4–e6. [Google Scholar] [CrossRef]
- Xu, L.; Samanta, A.; Costa, M.H.; Ganguly, S.; Nemani, R.R.; Myneni, R.B. Widespread Decline in Greenness of Amazonian Vegetation Due to the 2010 Drought. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C. Widespread Decline of Congo Rainforest Greenness in the Past Decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rayner, N.A.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Minola, L.; Zhang, F.; Azorin-Molina, C.; Pirooz, A.A.S.; Flay, R.G.J.; Hersbach, H.; Chen, D. Near-Surface Mean and Gust Wind Speeds in ERA5 across Sweden: Towards an Improved Gust Parametrization. Clim. Dyn. 2020, 55, 887–907. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T. Possible Impacts of Indian Ocean Dipole Mode Events on Global Climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Murtugudde, R.; Seager, R.; Thoppil, P. Arabian Sea Response to Monsoon Variations. Paleoceanography 2007, 22. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. An Improved Mixed Layer Model for Geophysical Applications. J. Geophys. Res. Ocean. 1994, 99, 25235–25266. [Google Scholar] [CrossRef]
- Mohd Akhir, M.F.; Zakaria, N.Z.; Tangang, F. Intermonsoon Variation of Physical Characteristics and Current Circulation along the East Coast of Peninsular Malaysia. Int. J. Oceanogr. 2014, 2014, 527587. [Google Scholar] [CrossRef]
- Yanagi, T.; Sachoemar, S.I.; Takao, T.; Fujiwara, S. Seasonal Variation of Stratification in the Gulf of Thailand. J. Oceanogr. 2001, 57, 461–470. [Google Scholar] [CrossRef]
- Muhammad, S.; Memon, A.A.; Muneeb, M.; Ghauri, B. Seasonal and Spatial Patterns of SST in the Northern Arabian Sea during 2001–2012. Egypt. J. Remote Sens. Sp. Sci. 2016, 19, 17–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y. Extreme IOD Induced Tropical Indian Ocean Warming in 2020. Geosci. Lett. 2021, 8, 37. [Google Scholar] [CrossRef]
- Park, K.-A.; Lee, E.-Y.; Chang, E.; Hong, S. Spatial and Temporal Variability of Sea Surface Temperature and Warming Trends in the Yellow Sea. J. Mar. Syst. 2015, 143, 24–38. [Google Scholar] [CrossRef]
- Nicholls, N. All-India Summer Monsoon Rainfall and Sea Surface Temperatures around Northern Australia and Indonesia. J. Clim. 1995, 8, 1463–1467. [Google Scholar] [CrossRef]
- Saha, K. Zonal Anomaly of Sea Surface Temperature in Equatorial Indian Ocean and Its Possible Effect upon Monsoon Circulation. Tellus 1970, 22, 403–409. [Google Scholar] [CrossRef]
- Shukla, J. Effect of Arabian Sea-Surface Temperature Anomaly on Indian Summer Monsoon: A Numerical Experiment with the GFDL Model. J. Atmos. Sci. 1975, 32, 503–511. [Google Scholar] [CrossRef]
- Liu, L.; Yang, G.; Zhao, X.; Feng, L.; Han, G.; Wu, Y.; Yu, W. Why Was the Indian Ocean Dipole Weak in the Context of the Extreme El Niño in 2015? J. Clim. 2017, 30, 4755–4761. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, B.; Kumar, A.; Kinter, J.L., III. Seasonality in Prediction Skill and Predictable Pattern of Tropical Indian Ocean SST. J. Clim. 2015, 28, 7962–7984. [Google Scholar] [CrossRef]
- Liu, L.; Xie, S.-P.; Zheng, X.-T.; Li, T.; Du, Y.; Huang, G.; Yu, W.-D. Indian Ocean Variability in the CMIP5 Multi-Model Ensemble: The Zonal Dipole Mode. Clim. Dyn. 2014, 43, 1715–1730. [Google Scholar] [CrossRef]
- Liu, L.; Yu, W.; Li, T. Dynamic and Thermodynamic Air–Sea Coupling Associated with the Indian Ocean Dipole Diagnosed from 23 WCRP CMIP3 Models. J. Clim. 2011, 24, 4941–4958. [Google Scholar] [CrossRef]
- Ashok, K.; Chan, W.; Motoi, T.; Yamagata, T. Decadal Variability of the Indian Ocean Dipole. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Cai, W.; Zheng, X.-T.; Weller, E.; Collins, M.; Cowan, T.; Lengaigne, M.; Yu, W.; Yamagata, T. Projected Response of the Indian Ocean Dipole to Greenhouse Warming. Nat. Geosci. 2013, 6, 999–1007. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Flint, A.; Huang, C.; Flint, L.; Berry, J.A.; Davis, F.W.; Sperry, J.S.; Field, C.B. Tree Mortality Predicted from Drought-Induced Vascular Damage. Nat. Geosci. 2015, 8, 367–371. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Sandquist, D.R.; Potts, D.L.; Schwinning, S. Precipitation Pulses and Carbon Fluxes in Semiarid and Arid Ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef]
Category for Drought | Category | Value |
---|---|---|
No drought | Extremely wet | ≥2.00 |
Severely wet | 1.50 to 1.99 | |
Moderately wet | 1.00 to 1.49 | |
Mild wet | 0.00 to 0.99 | |
Mild drought | Mild drought | −0.99 to 0.00 |
Moderate drought | Moderate drought | −1.49 to −1.00 |
Severe drought | Severe drought | −1.99 to −1.50 |
Extreme drought | ≤−2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Chu, H.-J.; Anand, A. Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events. J. Mar. Sci. Eng. 2024, 12, 136. https://doi.org/10.3390/jmse12010136
Kumar V, Chu H-J, Anand A. Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events. Journal of Marine Science and Engineering. 2024; 12(1):136. https://doi.org/10.3390/jmse12010136
Chicago/Turabian StyleKumar, Vaibhav, Hone-Jay Chu, and Abhishek Anand. 2024. "Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events" Journal of Marine Science and Engineering 12, no. 1: 136. https://doi.org/10.3390/jmse12010136
APA StyleKumar, V., Chu, H. -J., & Anand, A. (2024). Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events. Journal of Marine Science and Engineering, 12(1), 136. https://doi.org/10.3390/jmse12010136