Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis
Abstract
:1. Introduction
- What current technologies are applied in smart aquaculture systems?
- What instrumentation systems are used for water control and monitoring?
- What image processing and artificial intelligence methodologies are applied in intelligent aquaculture systems?
- What is the future trend of aquaculture systems?
2. Methodology
3. Aquaculture Taxonomy
3.1. Taxonomic Classification According to Environment
- Mariculture or marine aquaculture refers to the breeding and reproduction of oysters, shrimp, clams, salmon, and bivalves, to name a few. It regularly develops in the ocean in saline water with at least 30 PSU (practical salinity units).
- Aquaculture in freshwater: This activity takes place on the continent, with water that has less than 0.5 PSU. This practice refers to the reproduction and rearing of aquatic animals in ponds, rivers, lakes, and continental bodies of water; some species are shrimp, tilapia, and crabs, to name a few.
- Aquaculture in salty water uses a mixture of seawater and freshwater in coastal areas, containing a salinity between 0.5 and 30 practical salinity units.
3.2. Classification According to the Type of Species
4. Aquaculture Technologies
5. Aquaculture Sensors
Artificial Vision and Image Processing in Aquaculture System
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Available online: https://www.fao.org/documents/card/en/c/ca9229en (accessed on 20 November 2023).
- Ababouch, L.; Thi, N.K.A.; Castro, S.M.; Fernandez, P.J. Value Chains and Market Access for Aquaculture Products. J. World Aquac. Soc. 2023, 54, 524–553. [Google Scholar] [CrossRef]
- Hasan, R.; Prapti, D.R.; Mostakim, G.M.; Chakraborty, T.R. System Requirement Specification of Mobile Apps for Shrimp Farming in Shyamnagar of Bangladesh. Am. J. Agric. Sci. Eng. Technol. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- FAO. Fisheries and Aquaculture. 2020. Available online: https://www.fao.org/fishery/en/facp/GHA (accessed on 20 November 2023).
- Chen, S.; Wang, J.; Che, B.; Sun, C. Ecological Footprint of Different Culture Modes of Penaeus vannamei in Northern China. Water 2023, 15, 2981. [Google Scholar] [CrossRef]
- Yan, W.; Chai, P.; Zhong, C. The Impact of Aquaculture Cooperation Organization Support on Fish Farmers’ Selected Good Aquaculture Practices: Based on a Survey Data of 586 Fish Farmers in China. Water 2023, 15, 3681. [Google Scholar] [CrossRef]
- Nash, R.; Shibaev, S.; Besenyei, L.; Potempa, T. Aquaculture with Focus on Vietnam and Thailand. Available online: https://research.thea.ie/handle/20.500.12065/3653 (accessed on 20 November 2023).
- Yep, B.; Zheng, Y. Aquaponic Trends and Challenges—A Review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Thorarinsdottir, R. Aquaponics Guidelines. Available online: https://skemman.is/bitstream/1946/23343/1/Guidelines_Aquaponics_20151112.pdf (accessed on 11 July 2023).
- FAO. Small Scale Aquaponic Food Production. 2020. Available online: https://www.fao.org/3/i4021e/i4021e.pdf (accessed on 18 October 2023).
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer: Boston, MA, USA, 1998. [Google Scholar]
- Espinal, C.A.; Matulic, D. Recirculating Aquaculture Technologies. 2019. Available online: https://link.springer.com/chapter/10.1007/978-3-030-15943-6_3 (accessed on 4 November 2023).
- Eck, M.; Körner, O.; Jijakli, M.H. Nutrient Cycling in Aquaponics Systems. Aquaponics Food Production Systems. 2019. Available online: https://link.springer.com/chapter/10.1007/978-3-030-15943-6_9 (accessed on 20 November 2023).
- García-Rodríguez, A.; García-Rodríguez, S.; Díez-Mediavilla, M.; Alonso-Tristán, C. Photosynthetic Active Radiation, Solar Irradiance and the CIE Standard Sky Classification. Appl. Sci. 2020, 10, 8007. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Cheng, C.-Y.; Cheng, S.-C.; Cheng, Y.-H.; Lo, W.-C.; Jiang, W.-L.; Nan, F.-H.; Chang, S.-H.; Ubina, N.A. A Low-Cost AI Buoy System for Monitoring Water Quality at Offshore Aquaculture Cages. Sensors 2022, 22, 4078. [Google Scholar] [CrossRef] [PubMed]
- Lapucci, C.; Antonini, A.; Böhm, E.; Organelli, E.; Massi, L.; Ortolani, A.; Brandini, C.; Maselli, F. Use of Sentinel-3 OLCI Images and Machine Learning to Assess the Ecological Quality of Italian Coastal Waters. Sensors 2023, 23, 9258. [Google Scholar] [CrossRef] [PubMed]
- Caballero, I.; Roca, M.; Santos-Echeandía, J.; Bernárdez, P.; Navarro, G. Use of the Sentinel-2 and Landsat-8 Satellites for Water Quality Monitoring: An Early Warning Tool in the Mar Menor Coastal Lagoon. Remote Sens. 2022, 14, 2744. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Seo, Y.-H. Development of a Virtual Aquarium System Interacting with a Smart Device. J. Real Time Image Process. 2014, 9, 531–539. [Google Scholar] [CrossRef]
- Abdurohman, M.; Putrada, A.G.; Deris, M.M. A Robust Internet of Things-Based Aquarium Control System Using Decision Tree Regression Algorithm. IEEE Access 2022, 10, 56937–56951. [Google Scholar] [CrossRef]
- Tseng, S.P.; Li, Y.R.; Wang, M.C. An Application of Internet of Things on Sustainable Aquaculture System. In Proceedings of the 2016 International Conference on Orange Technologies (ICOT), Melbourne, VIC, Australia, 18–20 December 2016; pp. 17–19. [Google Scholar]
- Kassem, T.; Shahrour, I.; El Khattabi, J.; Raslan, A. Smart and Sustainable Aquaculture Farms. Sustainability 2021, 13, 10685. [Google Scholar] [CrossRef]
- Chiu, M.-C.; Yan, W.-M.; Bhat, S.A.; Huang, N.-F. Development of Smart Aquaculture Farm Management System Using IoT and AI-Based Surrogate Models. J. Agric. Food Res. 2022, 9, 100357. [Google Scholar] [CrossRef]
- Shareef, Z.; Reddy, S.R.N. Design and Wireless Sensor Network Analysis of Water Quality Monitoring System for Aquaculture. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; pp. 405–408. [Google Scholar]
- Chen, C.-H.; Wu, Y.-C.; Zhang, J.-X.; Chen, Y.-H. IoT-Based Fish Farm Water Quality Monitoring System. Sensors 2022, 22, 6700. [Google Scholar] [CrossRef] [PubMed]
- Simbeye, D.S.; Yang, S.F. Water Quality Monitoring and Control for Aquaculture Based on Wireless Sensor Networks. J. Netw. 2014, 9, 840. [Google Scholar] [CrossRef]
- Sung, W.T.; Isa, I.G.T.; Hsiao, S.J. Designing Aquaculture Monitoring System Based on Data Fusion through Deep Reinforcement Learning (DRL). Electronics 2023, 12, 2032. [Google Scholar] [CrossRef]
- Hong, W.J.; Shamsuddin, N.; Abas, E.; Apong, R.A.; Masri, Z.; Suhaimi, H.; Gödeke, S.H.; Noh, M.N.A. Water quality monitoring with Arduino based sensors. Environments 2021, 8, 6. [Google Scholar] [CrossRef]
- Vijayakumar, N.; Ramya, R. The Real-Time Monitoring of Water Quality in IoT Environment. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Chiu, C.C.; Liao, T.L.; Chen, C.H.; Kao, S.E. AIoT Precision Feeding Management System. Electronics 2022, 11, 3358. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent Fish Farm—The Future of Aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef]
- Sun, L.; Luo, B.; Liu, T.; Liu, Y.; Wei, Y. Algorithm of Adaptive Fast Clustering for Fish Swarm Color Image Segmentation. IEEE Access 2019, 7, 178753–178762. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Metian, M.; Troell, M.; Christensen, V.; Steenbeek, J.; Pouil, S. Mapping Diversity of Species in Global Aquaculture. Rev. Aquacult. 2020, 12, 1090–1100. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, R. Smart Aquaculture: Integration of Sensors, Biosensors, and Artificial Intelligence. In Biosensors in Agriculture: Recent Trends and Future Perspectives. Concepts and Strategies in Plant Sciences; Pudake, R.N., Jain, U., Kole, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [Google Scholar] [CrossRef]
- Imai, T.; Arai, K.; Kobayashi, T. Smart Aquaculture System: A Remote Feeding System with Smartphones. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 93–96. [Google Scholar] [CrossRef]
- Dzulqornain, M.I.; Al Rasyid, M.U.H.; Sukaridhoto, S. Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 164, p. 01030. [Google Scholar]
- Shubhaker, B.; Prasad, D.; Manikanta, S.; Ba, P.A. Automated Fish Farm Aquaculture Monitoring System Using IoT. Available online: https://www.smec.ac.in/assets/images/research/ece/19-20/83.%20Automated%20Fish%20Farm%20Aquaculture%20Monitoring%20System%20Using%20IOT%20(1).pdf (accessed on 18 November 2023).
- Rashid, M.M.; Nayan, A.-A.; Rahman, M.O.; Simi, S.A.; Saha, J.; Kibria, M.G. IoT based smart water quality prediction for biofloc aquaculture. arXiv 2022, arXiv:2208.08866. [Google Scholar] [CrossRef]
- Lloyd Chrispin, C.; Jothiswaran, V.V.; Velumani, T.; Agnes Daney Angela, S.; Jayaraman, R. Application of Artificial Intelligence in Fisheries and Aquaculture. Available online: https://www.biospub.com/index.php/biorestoday/article/download/257/199 (accessed on 20 November 2023).
- Chen, X.; Li, D.; Mo, D.; Cui, Z.; Li, X.; Lian, H.; Gong, M. Three-Dimensional Printed Biomimetic Robotic Fish for Dynamic Monitoring of Water Quality in Aquaculture. Micromachines 2023, 14, 1578. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Fitch, P.; Thorburn, P.J. Predicting the Trend of Dissolved Oxygen Based on the kPCA-RNN Model. Water 2020, 12, 585. [Google Scholar] [CrossRef]
- Xu, F.; Pan, Z.; Xia, R. E-commerce Product Review Sentiment Classification Based on a Naïve Bayes Continuous Learning Framework. Inf. Process. Manag. 2020, 57, 102221. [Google Scholar] [CrossRef]
- Tang, Q.; Qiu, W.; Zhou, Y. Classification of Complex Power Quality Disturbances Using Optimized S-Transform and Kernel SVM. IEEE Trans. Ind. Electron. 2019, 67, 9715–9723. [Google Scholar] [CrossRef]
- Zhakov, A.; Zhu, H.; Siegel, A.; Rank, S.; Schmidt, T.; Fienhold, L.; Hummel, S. Application of ANN for Fault Detection in Overhead Transport Systems for Semiconductor Fab. IEEE Trans. Semicond. Manuf. 2020, 33, 337–345. [Google Scholar] [CrossRef]
- Jia, B.-B.; Zhang, M.-L. MD-KNN: An instance-based approach for multi-dimensional classification. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2020; pp. 126–133. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer Science: New York, NY, USA, 2012. [Google Scholar]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised Machine Learning: A Review of Classification Techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2021, 13, 66–90. [Google Scholar] [CrossRef]
- Vallecillos, A.; María-Dolores, E.; Villa, J.; Afonso, J.M.; Armero, E. Potential Use of Image Analysis in Breeding Programs for Growth and Yield Traits in Meagre (Argyrosomus regius). J. Mar. Sci. Eng. 2023, 11, 2067. [Google Scholar] [CrossRef]
- Garcia, R.; Prados, R.; Quintana, J.; Tempelaar, A.; Gracias, N.; Rosen, S.; Vågstøl, H.; Løvall, K. Automatic Segmentation of Fish Using Deep Learning with Application to Fish Size Measurement. Ices J. Mar. Sci. 2020, 77, 1354–1366. [Google Scholar] [CrossRef]
- Fernandes, A.F.A.; Turra, E.M.; de Alvarenga, E.R.; Passafaro, T.L.; Lopes, F.B.; Alves, G.F.O.; Singh, V.; Rosa, G.J.M. Deep Learning Image Segmentation for Extraction of Fish Body Measurements and Prediction of Body Weight and Carcass Traits in Nile Tilapia. Comput. Electron. Agric. 2020, 170, 105274. [Google Scholar] [CrossRef]
- Petrellis, N. Measurement of Fish Morphological Features through Image Processing and Deep Learning Techniques. Appl. Sci. 2021, 11, 4416. [Google Scholar] [CrossRef]
- Siddique, A.; Sun, J.; Hou, K.J.; Vai, M.I.; Pun, S.H.; Iqbal, M.A. SpikoPoniC: A Low-Cost Spiking Neuromorphic Computer for Smart Aquaponics. Agriculture 2023, 13, 2057. [Google Scholar] [CrossRef]
- França Albuquerque, P.L.; Garcia, V.; da Silva Oliveira, A.; Lewandowski, T.; Detweiler, C.; Gonçalves, A.B.; Costa, C.S.; Naka, M.H.; Pistori, H. Automatic Live Fingerlings Counting Using Computer Vision. Comput. Electron. Agric. 2019, 167, 105015. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Wang, J.; Liu, C.; Duan, Q. Prediction of Dissolved Oxygen in Pond Culture Water Based on K-means Clustering and Gated Recurrent Unit Neural Network. Aquac. Eng. 2020, 91, 102122. [Google Scholar] [CrossRef]
- Ordoñez, A.; Eikvil, L.; Salberg, A.-B.; Harbitz, A.; Murray, S.M.; Kampffmeyer, M.C. Explaining Decisions of Deep Neural Networks Used for Fish Age Prediction. PLoS ONE 2020, 15, e0235013. [Google Scholar] [CrossRef] [PubMed]
- Barulin, N.V. Using machine learning algorithms to analyse the scute structure and sex identification of sterlet Acipenser ruthenus (Acipenseridae). Aquac. Res. 2019, 50, 2810–2825. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Yu, H.; Fang, X.; Song, L.; Li, D.; Chen, Y. Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review. Arch. Comput. Methods Eng. 2021, 28, 2785–2816. [Google Scholar] [CrossRef]
- Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish Detection and Species Classification in Underwater Environments Using Deep Learning with Temporal Information. Ecol. Inform. 2020, 57, 101088. [Google Scholar] [CrossRef]
- Rum, S.N.M.; Nawawi, F.A.Z. FishDeTec: A Fish Identification Application using Image Recognition Approach. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 102–106. [Google Scholar] [CrossRef]
- Adegboye, M.A.; Aibinu, A.M.; Kolo, J.G.; Aliyu, I.; Folorunso, T.A.; Lee, S.-H. Incorporating Intelligence in Fish Feeding System for Dispensing Feed Based on Fish Feeding Intensity. IEEE Access 2020, 8, 91948–91960. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, X.; Li, W.; Wei, Y.; An, D. Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network. Aquac. Eng. 2020, 90, 102085. [Google Scholar] [CrossRef]
- Kim, S.; Alizamir, M.; Zounemat-Kermani, M.; Kisi, O.; Singh, V.P. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea. J. Environ. Manag. 2020, 270, 110834. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef]
- Lunestad, B.T.; Nesse, L.; Lassen, J.; Svihus, B.; Nesbakken, T.; Fossum, K.; Rosnes, J.T.; Kruse, H.; Yazdankhah, S. Salmonella in fish feed; occurrence and implications for fish and human health in Norway. Aquaculture 2007, 265, 1–8. [Google Scholar] [CrossRef]
- Wagner, W.P. Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies. Expert Syst. Appl. 2017, 76, 85–96. [Google Scholar] [CrossRef]
- Wang, G.; Hwang, J.-N.; Wallace, F.; Rose, C. Multi-scale fish segmentation refinement and missing shape recovery. IEEE Access 2019, 7, 52836–52845. [Google Scholar] [CrossRef]
- Yao, H.; Duan, Q.; Li, D.; Wang, J. An improved K-means clustering algorithm for fish image segmentation. Math. Comput. Model. 2013, 58, 790–798. [Google Scholar] [CrossRef]
- Qiao, X.; Bao, J.; Zeng, L.; Zou, J.; Li, D. An automatic active contour method for sea cucumber segmentation in natural underwater environments. Comput. Electron. Agric. 2017, 135, 134–142. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 2016, 187, 49–58. [Google Scholar] [CrossRef]
- Bórquez López, R.A.; Martinez Cordova, L.R.; Gil Nuñez, J.C.; Gonzalez Galaviz, J.R.; Ibarra Gamez, J.C.; Casillas Hernandez, R. Implementation and Evaluation of Open-Source Hardware to Monitor Water Quality in Precision Aquaculture. Sensors 2020, 20, 6112. [Google Scholar] [CrossRef]
- Li, H.-C.; Yu, K.-W.; Lien, C.-H.; Lin, C.; Yu, C.-R. Vaidyanathan, S. Improving Aquaculture Water Quality Using Dual-Input Fuzzy Logic Control for Ammonia Nitrogen Management. J. Mar. Sci. Eng. 2023, 11, 1109. [Google Scholar] [CrossRef]
Parameter | Minimum or Optimal Concentrations | Reference |
---|---|---|
pH | 6.5–8.0 | [8] |
Nitrite nitrogen | 0.25–1.0 mg NO-N/L | |
Temperature | 17–34 °C | [9] |
Dissolved Oxygen | >4 mg/L | |
Flow | 1–2 L/min | [10] |
Total Dissolved Solids | <1000 mg/L | |
Salinity | 0–2 ppt | |
Relative Humidity | 60–80% | |
CO | 340–1300 ppm | [11] |
Alkalinity | 50–150 mg/L CaCO | |
Electro-Conductivity | 30–5000 μ-mhos/cm | |
Total ammonia | <2 mg NH-N/L | [12] |
Nitrate nitrogen | 50–100 mg NO-N/L | [13] |
Light Intensity | 600–900 PPFD | [14] |
Ref | System | Connection | Tb | DO | Ca | WL | WQ | Wt | Server |
---|---|---|---|---|---|---|---|---|---|
[22] | Fishpond | Wi-Fi | X | X | Cloud | ||||
[24] | Fish farm | Wi-Fi/LoRa | X | X | Web | ||||
[25] | Fishpond | Wi-Fi | X | X | PC | ||||
[26] | Fishpond | Wi-Fi | X | X | Cloud | ||||
[27] | Fishpond | Wire Network | X | X | Web | ||||
[28] | Fishpond | Wireless | X | X | Cloud | ||||
[29] | Fish farm | Lora Wan | X | X | Cloud | ||||
[30] | Fish farm | Wi-Fi/LoRa/5G | X | X | X | X | Cloud |
Reference | Mainboard | Objective | Benefits |
---|---|---|---|
[22] | Arduino Mega 2560 | Predict growth, autonomous feeding | Reduce excess feeding, fish monitoring and control, optimize production, reduce production costs |
[24] | Plc for the robot, Arduino Mega 2560 for sensors | Problem detection | 24 h processes, high reliability and stability in measurements, parameter change notice, the robotic arm can perform maintenance work, remote monitoring, real-time water notification |
[31] | Microcontrollers | Measurement and control of production, continuous monitoring, biomass estimation | Remote monitoring, real-time water notification, disease prevention, 24 h processes, robot process operators, precise and automatic food distribution, reduce operating costs, improve food management |
[25] | Atmega 16, Labview for visualization | Water monitoring and network control | Monitoring in 3 min time intervals, user notification |
Work | Object | Obtaining the Image | Advantages |
---|---|---|---|
[71] | Fish on fishmonger ramps | Contour segmentation: | Does not require high volumes of datasets. |
Coarse to acceptable level segmentation. | Prior knowledge of the shape of the fish. | ||
Continuous iterative contour segmentation. | More samples are needed for shape modeling. | ||
Application of pre-trained shape models. | Segmentation can be performed on low-quality images. | ||
No human effort is required. | |||
[72] | Contour segmentation: | High precision and stability. | |
Separates the outline of the fish from the background image. | People’s prior knowledge determines sample values. | ||
Change the image to grayscale. | |||
Apply K means and segment the image. | |||
Adopt mathematical morphology to establish the limit of the fish. | |||
[31] | Bank of fish | Image segmentation. | Accurate and effective. |
Easy to understand and analyze. | |||
Prior knowledge of the characteristics of the fish. | |||
The image obtained replaces the original. | Complex noise reduction. | ||
Execution time reduction. | |||
[73] | Underwater environments | Image segmentation: | No human intervention is required. |
RGB image fusion. | Fast and effective, 4.27 s. | ||
Application of the adaptive contrast histogram equalization method. | Beats algorithms like Otsu, Chan, and Vese. | ||
Edge detection algorithm. | |||
Fusion of the image of points 2 and 3, body and edge. | |||
[74] | Underwater environments | Principal Component Analysis (PCA). | The applied model obtains an accuracy of 98.64 |
Spatial Pyramid Programming (SPP). |
Reference | Object | Method | Measure | Points | Efficiency | Limitations |
---|---|---|---|---|---|---|
[71] | Fishmonger | Weighted least squares | Size | Tail–body | Greater than 95% | The method is optimal for flatfish; for other types of fish, more K-means would have to be applied. |
Length | Body inflection and mouth | 583 masks | ||||
[72] | - | Otsu algorithm/ histogram peaks | Disease diagnosis | Default cluster center | - | The result depends on adequately choosing the right cluster center. |
Calculate the distance of each sample from the default cluster | - | The use of other methods is required to ensure the correct choice of the cluster. | ||||
This technique was applied only to carp. | ||||||
[31] | Bank of fish | Adaptive fast clustering | Color | Grayscale databases | 56% lower execution time of Adaptive Fast Clustering algorithm compared to K-means | This technique was applied only to carp. |
Behavior | Default grayscale cluster center | 71% lower execution time of fast adaptive clustering algorithm compared to fuzzy clustering algorithm | The result depends on adequately choosing the right cluster center. Image pixel loss | |||
[73] | Underwater environments | Active contour | Identify the sea cucumber. | - | 120 samples | This technique was applied only to sea cucumbers. |
[74] | Underwater environments | Deep neural network | Fish Identification Color Texture | - | 98.64% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capetillo-Contreras, O.; Pérez-Reynoso, F.D.; Zamora-Antuñano, M.A.; Álvarez-Alvarado, J.M.; Rodríguez-Reséndiz, J. Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis. J. Mar. Sci. Eng. 2024, 12, 161. https://doi.org/10.3390/jmse12010161
Capetillo-Contreras O, Pérez-Reynoso FD, Zamora-Antuñano MA, Álvarez-Alvarado JM, Rodríguez-Reséndiz J. Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis. Journal of Marine Science and Engineering. 2024; 12(1):161. https://doi.org/10.3390/jmse12010161
Chicago/Turabian StyleCapetillo-Contreras, Omar, Francisco David Pérez-Reynoso, Marco Antonio Zamora-Antuñano, José Manuel Álvarez-Alvarado, and Juvenal Rodríguez-Reséndiz. 2024. "Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis" Journal of Marine Science and Engineering 12, no. 1: 161. https://doi.org/10.3390/jmse12010161
APA StyleCapetillo-Contreras, O., Pérez-Reynoso, F. D., Zamora-Antuñano, M. A., Álvarez-Alvarado, J. M., & Rodríguez-Reséndiz, J. (2024). Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis. Journal of Marine Science and Engineering, 12(1), 161. https://doi.org/10.3390/jmse12010161