Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach
Abstract
:Featured Application
Abstract
1. Introduction
- The system should provide real-time positioning in three dimensions at a minimum rate of 5 Hz.
- The system should not be restricted to specific sectors of the subsurface docking component and must provide a positioning solution for any position and orientation of the AUV and the docking component.
- The system is required to deliver a positioning solution within a range of 1.5 m from the docking component with an accuracy of 5 cm.
- The hardware supporting the developed method should be suitable for installation inside the LARS docking component.
- The system onboard the AUV and the one installed on the docking component should operate as independent asynchronous systems.
- The system should provide a positioning solution in scenarios occurring beyond the line of sight of the AUV’s forward-looking camera to enable docking at the AUV’s center of gravity point.
- The system’s hardware should preferably employ the AUV’s onboard sensors and avoid the necessity for the installation of additional external sensors.
2. Related Works
3. Physical Model and Mathematical Formulation
3.1. EM Beacon
3.2. Receiving Magnetometers
4. Signal Processing
5. Computing the Beacon Location
5.1. Determination of the Beacon Direction
5.2. Computation of the Beacon Position
6. Algorithm Implementation
Algorithm 1: Direction computation algorithm |
Algorithm 2: Position computation algorithm |
7. Simulation-Based Validation
8. In-Laboratory Prototype Testing
8.1. Lab System Implementation
8.2. Lab System Experiments
9. System Integration and Experimental Validation
9.1. Assessment of the Integrated System’s Accuracy and Detection Range
9.2. Docking Maneuvering Sequence
9.3. Pool Trials of the Terminal Docking Phase
10. Conclusions
- Designing the beacon such that it can generate stronger magnetic fields. This improvement has the potential to enhance both the detection range and the efficiency of the signal extraction algorithm, leading to improved determination of signal phases.
- Enabling the AUV to utilize a magnetometer with increased sensitivity and a higher sampling rate. This approach would allow the AUV to detect weak magnetic fields and enable the beacon to generate magnetic fields at higher frequencies. The objective is to enhance the system’s capability to filter these signals out from other magnetic fields effectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
Orientation of coil i with respect to the beacon frame | |
Permeability of the medium | |
Permeability of the free space | |
Relative permeability of the medium | |
Signal frequency of coil i | |
Signal phase of coil i | |
Complete magnetic flux density of the EM beacon | |
Magnetic flux density of coil i | |
Geomagnetic flux density | |
Measured magnetic flux density | |
Measured magnetic flux density of coil i | |
Magnetic moment of coil i | |
Position of the origin relative to the origin | |
Position of the origin relative to the origin at the moment of the “handshake” | |
Rotation matrix between the EM beacon and “handshake” frames | |
Rotation matrix between the EM beacon and AUV frames | |
Rotation matrix between the NED and AUV frames | |
Rotation matrix between the “handshake” and AUV frames | |
AUV’s linear accelerations, as measured by the AHRS’ accelerometers | |
AUV’s angular velocities, as measured by the AHRS’ gyros | |
Rotation angles between the NED and the AUV frames | |
Rotation angles between the EM beacon and the AUV frames at the moment of the “handshake” | |
AUV’s rotation angles, as estimated by the EKF | |
Rotation angles between the EM beacon and “handshake” frames | |
Rotation angles between the EM beacon and the AUV frames | |
Rotation angles between the “handshake” and the AUV frames | |
Cross-sectional area of coil i | |
Current of coil i | |
Number of turns of coil i | |
Reference signal with a frequency i and a phase of | |
Reference signal with a frequency i | |
{} | EM beacon frame |
{} | World NED frame |
{} | “Handshake” frame |
{} | AUV and magnetometer frame |
References
- Gu, H.t.; Meng, L.; Bai, G.; Zhang, H.; Lin, Y.; Liu, S. Automated recovery of the UUV based on the towed system by the USV. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–7. [Google Scholar]
- Sarda, E.I.; Dhanak, M.R. A USV-based automated launch and recovery system for AUVs. IEEE J. Ocean. Eng. 2016, 42, 37–55. [Google Scholar] [CrossRef]
- Jalving, B.; Faugstadmo, J.E.; Vestgard, K.; Hegrenaes, O.; Engelhardtsen, O.; Hyland, B. Payload sensors, navigation and risk reduction for AUV under ice surveys. In Proceedings of the OCEANS 2008, Woods Hole, MA, USA, 13–14 October 2008; pp. 1–8. [Google Scholar]
- Lin, M.; Lin, R.; Yang, C.; Li, D.; Zhang, Z.; Zhao, Y.; Ding, W. Docking to an underwater suspended charging station: Systematic design and experimental tests. Ocean Eng. 2022, 249, 110766. [Google Scholar] [CrossRef]
- Kimball, P.W.; Clark, E.B.; Scully, M.; Richmond, K.; Flesher, C.; Lindzey, L.E.; Harman, J.; Huffstutler, K.; Lawrence, J.; Lelievre, S.; et al. The ARTEMIS under-ice AUV docking system. J. Field Robot. 2018, 35, 299–308. [Google Scholar] [CrossRef]
- Sarda, E.I.; Dhanak, M.R. Launch and recovery of an autonomous underwater vehicle from a station-keeping unmanned surface vehicle. IEEE J. Ocean. Eng. 2018, 44, 290–299. [Google Scholar] [CrossRef]
- Piskura, J.C.; Purcell, M.; Stokey, R.; Austin, T.; Tebo, D.; Christensen, R.; Jaffre, F. Development of a robust Line Capture, Line Recovery (LCLR) technology for autonomous docking of AUVs. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Hildebrandt, M.; Christensen, L.; Kirchner, F. Combining cameras, magnetometers and machine-learning into a close-range localization system for docking and homing. In Proceedings of the OCEANS 2017-Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–6. [Google Scholar]
- Miranda, M.; Beaujean, P.P.; An, E.; Dhanak, M. Homing an unmanned underwater vehicle equipped with a DUSBL to an unmanned surface platform: A feasibility study. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–10. [Google Scholar]
- Maki, T.; Shiroku, R.; Sato, Y.; Matsuda, T.; Sakamaki, T.; Ura, T. Docking method for hovering type AUVs by acoustic and visual positioning. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–6. [Google Scholar]
- Fan, S.; Liu, C.; Li, B.; Xu, Y.; Xu, W. AUV docking based on USBL navigation and vision guidance. J. Mar. Sci. Technol. 2019, 24, 673–685. [Google Scholar] [CrossRef]
- Kusche, R.; Schmidt, S.O.; Hellbrück, H. Indoor Positioning via Artificial Magnetic Fields. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Dai, H.; Song, S.; Zeng, X.; Su, S.; Lin, M.; Meng, M.Q.H. 6-D electromagnetic tracking approach using uniaxial transmitting coil and tri-axial magneto-resistive sensor. IEEE Sens. J. 2017, 18, 1178–1186. [Google Scholar] [CrossRef]
- Pasku, V.; De Angelis, A.; De Angelis, G.; Arumugam, D.D.; Dionigi, M.; Carbone, P.; Moschitta, A.; Ricketts, D.S. Magnetic field-based positioning systems. IEEE Commun. Surv. Tutor. 2017, 19, 2003–2017. [Google Scholar] [CrossRef]
- Bian, S.; Hevesi, P.; Christensen, L.; Lukowicz, P. Induced Magnetic Field-Based Indoor Positioning System for Underwater Environments. Sensors 2021, 21, 2218. [Google Scholar] [CrossRef] [PubMed]
- Sheinker, A.; Ginzburg, B.; Salomonski, N.; Frumkis, L.; Kaplan, B.Z. Localization in 3-D using beacons of low frequency magnetic field. IEEE Trans. Instrum. Meas. 2013, 62, 3194–3201. [Google Scholar] [CrossRef]
- Feezor, M.D.; Sorrell, F.Y.; Blankinship, P.R.; Bellingham, J.G. Autonomous underwater vehicle homing/docking via electromagnetic guidance. IEEE J. Ocean. Eng. 2001, 26, 515–521. [Google Scholar] [CrossRef]
- Peng, S.; Liu, J.; Wu, J.; Li, C.; Liu, B.; Cai, W.; Yu, H. A low-cost electromagnetic docking guidance system for micro autonomous underwater vehicles. Sensors 2019, 19, 682. [Google Scholar] [CrossRef] [PubMed]
- Vandavasi, B.N.J.; Arunachalam, U.; Narayanaswamy, V.; Raju, R.; Vittal, D.P.; Muthiah, R.; Gidugu, A.R. Concept and testing of an electromagnetic homing guidance system for autonomous underwater vehicles. Appl. Ocean Res. 2018, 73, 149–159. [Google Scholar] [CrossRef]
- Lin, R.; Zhao, Y.; Li, D.; Lin, M.; Yang, C. Underwater Electromagnetic Guidance Based on the Magnetic Dipole Model Applied in AUV Terminal Docking. J. Mar. Sci. Eng. 2022, 10, 995. [Google Scholar] [CrossRef]
- Andria, G.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L.; Larizza, P.; Selicato, S. Development and performance evaluation of an electromagnetic tracking system for surgery navigation. Measurement 2019, 148, 106916. [Google Scholar] [CrossRef]
- Hu, C.; Song, S.; Wang, X.; Meng, M.Q.H.; Li, B. A novel positioning and orientation system based on three-axis magnetic coils. IEEE Trans. Magn. 2012, 48, 2211–2219. [Google Scholar] [CrossRef]
- Gutnik, Y.; Cohen, N.; Klein, I.; Groper, M. Data-Driven Underwater Navigation workshop: AUV Close-Range Localization and Guidance Employing an Electro-Magnetic Beacon. In Proceedings of the 2023 IEEE Underwater Technology (UT), Tokyo, Japan, 6–9 March 2023; pp. 1–5. [Google Scholar]
- Gutnik, Y.; Avni, A.; Treibitz, T.; Groper, M. On the Adaptation of an AUV into a Dedicated Platform for Close Range Imaging Survey Missions. J. Mar. Sci. Eng. 2022, 10, 974. [Google Scholar] [CrossRef]
- Carreras, M.; Hernández, J.D.; Vidal, E.; Palomeras, N.; Ribas, D.; Ridao, P. SPARUS II AUV—A hovering vehicle for seabed inspection. IEEE J. Ocean. Eng. 2018, 43, 344–355. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics; Pearson Education India; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Zhang, C.; Liu, H.; Ge, J.; Dong, H. FPGA-based digital lock-in amplifier with high-precision automatic frequency tracking. IEEE Access 2020, 8, 123114–123122. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
- Kalaitzakis, M.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Experimental comparison of fiducial markers for pose estimation. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 781–789. [Google Scholar]
- Porr, B. IIR1—Infinitely Impulse Response Filter 1. 2023. Available online: https://github.com/berndporr/iir1 (accessed on 4 January 2024).
- Robotics, P. ArUco ROS Package. 2024. Available online: https://github.com/pal-robotics/aruco_ros (accessed on 4 January 2024).
- Sonnaillon, M.O.; Bonetto, F.J. Lock-in amplifier error prediction and correction in frequency sweep measurements. Rev. Sci. Instrum. 2007, 78, 014701. [Google Scholar] [CrossRef] [PubMed]
- Newman, P. Levenberg-Marquardt Algorithm with Numeric Jacobians. 2024. Available online: https://docs.mrpt.org/reference/latest/page_tutorial_math_levenberg_marquardt.html (accessed on 4 January 2024).
- Smach, R. Python-Based Library for Hierarchical State Machines. 2024. Available online: https://wiki.ros.org/smach (accessed on 4 January 2024).
Sector | Direction | , | , | , |
---|---|---|---|---|
1 | x > 0, y > 0, z > 0 | +, + | +, + | +, + |
7 | x < 0, y < 0, z < 0 | +, + | +, + | +, + |
2 | x > 0, y < 0, z > 0 | +, - | -, + | -, - |
8 | x < 0, y > 0, z < 0 | +, - | -, + | -, - |
3 | x < 0, y < 0, z > 0 | -, - | +, - | +, - |
5 | x > 0, y > 0, z < 0 | -, - | +, - | +, - |
4 | x < 0, y > 0, z > 0 | -, + | -, - | -, + |
6 | x > 0, y < 0, z < 0 | -, + | -, - | -, + |
State | Direction | , | , | , |
---|---|---|---|---|
1 | x > 0, y > 0, z > 0 | +, + | +, + | +, + |
2 | x > 0, y < 0, z > 0 | +, - | -, + | -, - |
3 | x < 0, y < 0, z > 0 | -, - | +, - | +, - |
4 | x < 0, y > 0, z > 0 | -, + | -, - | -, + |
Beacon core diameter () | 0.12 m |
Wire cross-section diameter () | 0.7 mm |
Coil 1 input current () | 1.53 A |
Coil 2 input current () | 1.3 A |
Coil 3 input current () | 1.4 A |
Coil 1 frequency () | 16 Hz |
Coil 2 frequency () | 20 Hz |
Coil 3 frequency () | 25 Hz |
Coil 1 number of turns () | 370 turns |
Coil 2 number of turns () | 370 turns |
Coil 3 number of turns () | 370 turns |
Magnetometer | |
---|---|
Model | Vectornav VN100/VN300 |
Type | MEMS |
Scale | ±2.5 G |
Noise Density | 140 G/ |
Resolution | 1.5 mG |
Sampling Frequency | 200 Hz |
Scenario | RMSE (m) |
---|---|
Static | 0.0031 |
Static with inaccuracy in parameters | 0.0252 |
Static with sensor misalignment | 0.052 |
Dynamic | 0.13 |
Dynamic with inaccuracy in parameters | 0.148 |
Dynamic with sensor misalignment | 0.144 |
Preset Frequency | Measured Frequency (% Max Error) |
---|---|
16 Hz | 15.91–15.96 Hz (0.56%) |
20 Hz | 19.86–19.95 Hz (0.7%) |
25 Hz | 24.85–24.98 Hz (0.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutnik, Y.; Groper, M. Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach. J. Mar. Sci. Eng. 2024, 12, 192. https://doi.org/10.3390/jmse12010192
Gutnik Y, Groper M. Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach. Journal of Marine Science and Engineering. 2024; 12(1):192. https://doi.org/10.3390/jmse12010192
Chicago/Turabian StyleGutnik, Yevgeni, and Morel Groper. 2024. "Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach" Journal of Marine Science and Engineering 12, no. 1: 192. https://doi.org/10.3390/jmse12010192
APA StyleGutnik, Y., & Groper, M. (2024). Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach. Journal of Marine Science and Engineering, 12(1), 192. https://doi.org/10.3390/jmse12010192