On the Wind-Driven Formation of Plankton Patches in Island Wakes
Abstract
:1. Introduction
2. Theoretical Background and Methodology
2.1. Theoretical Background
2.2. Model Description
2.3. Forcing and Boundary Conditions
2.4. Experimental Design
3. Results and Discussion
3.1. First Scenario (U = 5 cm/s)
3.2. Second Scenario (U = 20 cm/s)
4. Final Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchinson, G.E. The concept of pattern in ecology. Proc. Acad. Nat. Sci. USA 1953, 105, 1–12. [Google Scholar]
- Frontier, S. Étude statistique de la dispersion du zooplancton. J. Exp. Mar. Biol. Ecol. 1973, 12, 229–262. [Google Scholar] [CrossRef]
- Cassie, R.M. Frequency distribution models in the ecology of plankton and other organisms. J. Anim. Ecol. 1962, 31, 65–92. [Google Scholar] [CrossRef]
- Cassie, R.M. Microdistribution of plankton. Oceanogr. Mar. Biol. 1963, 1, 223–252. [Google Scholar]
- Levin, S.A.; Segel, L.A. Hypothesis for origin of planktonic patchiness. Nature 1976, 259, 659. [Google Scholar] [CrossRef]
- Owen, R.W. Microscale and finescale variations of small plankton in coastal and pelagic environments. J. Mar. Res. 1989, 47, 197–240. [Google Scholar] [CrossRef]
- Davis, C.S.; Gallager, S.M.; Solow, A.R. Microaggregations of oceanic plankton observed by towed video microscopy. Science 1992, 257, 230–232. [Google Scholar] [CrossRef]
- Pinel-Alloul, P. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 1995, 300–301, 17–42. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Shroyer, E.L.; McManus, M.A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 2013, 40, 3968–3974. [Google Scholar] [CrossRef]
- Haury, L.R.; McGowan, J.A.; Wiebe, P.H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Patterns in Plankton Communities; Steele, J.H., Ed.; Plenum Press: New York, NY, USA, 1978; pp. 277–327. [Google Scholar]
- Robinson, K.L.; Sponaugle, S.; Luo, J.Y.; Gleiber, M.R.; Cowen, R.K. Big or small, patchy all: Resolution of marine plankton patch structure at micro- to submesoscales for 36 taxa. Sci. Adv. 2021, 7, 2904. [Google Scholar] [CrossRef]
- Doty, M.S.; Oguri, M. The island mass effect. J. Cons. Int. Explor. Mer. 1956, 22, 33–37. [Google Scholar] [CrossRef]
- Mann, K.H.; Lazier, J.R.N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 3rd ed.; Blackwell Publishing: Cambridge, UK, 2005. [Google Scholar]
- Kodaira, T.; Waseda, T. Tidally generated island wakes and surface water cooling over Izu Ridge. Ocean Dyn. 2019, 69, 1373–1385. [Google Scholar] [CrossRef]
- Griffin, D.A.; Middleton, J.H.; Bode, L. The tidal and longer-period circulation of Capricornia, southern Great Barrier Reef. Austr. J. Mar. Freshw. Res. 1987, 38, 461–474. [Google Scholar] [CrossRef]
- Hasegawa, D.; Yamazaki, H.; Lueck, R.G.; Seuront, L. How islands stir and fertilize the upper ocean. Geophys. Res. Lett. 2004, 31, L16303. [Google Scholar] [CrossRef]
- Bell, P.R.F. Eutrophication and coral reefs—Some examples in the Great Barrier Reef Lagoon. Water Res. 1992, 26, 553–568. [Google Scholar] [CrossRef]
- Gove, J.M.; McManus, M.A.; Neuheimer, A.B.; Polovina, J.J.; Drazen, J.C.; Smith, C.R.; Merrifield, M.A.; Friedlander, A.M.; Ehses, J.S.; Young, C.W.; et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 2016, 7, 10581. [Google Scholar] [CrossRef] [PubMed]
- Street, J.H.; Knee, K.L.; Grossman, E.E.; Paytan, A. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar. Chem. 2008, 109, 355–376. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Barkley, R. Johnston Atol’s wake. J. Mar. Res. 1972, 30, 201–216. [Google Scholar]
- Pattiaratchi, C.; James, A.; Collins, M. Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments. J. Geophys. Res. 1987, 92, 783–794. [Google Scholar] [CrossRef]
- Wolanski, E.; Hamner, W.M. Topographically controlled fronts in the ocean and their biological influence. Science 1988, 241, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, M. Island wakes in deep and shallow water. J. Geophys. Res. 1988, 93, 5153–5154. [Google Scholar] [CrossRef]
- Aristegui, J.; Sangra, P.; Hernandez-Leon, S.; Canton, M.; Hernandez-Guerra, A.; Kerling, J. Island-induced eddies in the Canary Islands. Deep-Sea Res. Part I 1994, 41, 1509–1525. [Google Scholar] [CrossRef]
- Heywood, K.J.; Stevens, D.P.; Bigg, G.R. Eddy formation behind the tropical island of Aldabra. Deep-Sea Res. Part I 1996, 43, 555–578. [Google Scholar] [CrossRef]
- Dietrich, D.E.; Bowman, M.J.; Lin, C.A. Numerical studies of small island wakes in the ocean. Geophys. Astrophys. Fluid Dyn. 1996, 83, 195–231. [Google Scholar] [CrossRef]
- Barton, E.; Basterretxea, G.; Flament, P.; Mitchelson-Jacob, E.; Jones, B.; Aristegui, J.; Herrera, F. Lee region of Gran Canaria. J. Geophys. Res. 2000, 105, 17173–17193. [Google Scholar] [CrossRef]
- Aiken, C.; Moore, A.; Middleton, J. The non-normality of coastal ocean flows around obstacles, and their response to stochastic forcing. J. Phys. Oceanogr. 2002, 32, 2955–2974. [Google Scholar] [CrossRef]
- Coutis, P.; Middleton, J. The physical and biological impact of a small island wake in the deep ocean. Deep-Sea Res. Part I 2002, 49, 1341–1361. [Google Scholar] [CrossRef]
- Harlan, J.A.; Swearer, S.E.; Leben, R.R.; Fox, C.A. Surface circulation in a Caribbean Island wake. Cont. Shelf Res. 2002, 22, 417–434. [Google Scholar] [CrossRef]
- Neill, S.P.; Elliott, A.J. Observations and simulations of an unsteady island wake in the Firth of Forth, Scotland. Ocean Dyn. 2004, 54, 324–332. [Google Scholar] [CrossRef]
- Caldeira, R.M.A.; Marchesiello, P.; Nezlin, N.P.; DiGiacomo, P.M.; McWilliams, J.C. Island wakes in the Southern California Bight. J. Geophys. Res. 2005, 110, C11012. [Google Scholar] [CrossRef]
- Kämpf, J.; Möller, L.; Baring, R.; Shute, A.; Cheesman, C. The island mass effect: A study of wind-driven nutrient upwelling around reef islands. J. Oceanogr. 2023, 79, 161–174. [Google Scholar] [CrossRef]
- Hamner, W.M.; Hauri, I.R. Effects of island mass: Water flow and plankton pattern around a reef in the Great Barrier Reef lagoon, Australia. Limnol. Oceanogr. 1981, 26, 1084–1102. [Google Scholar] [CrossRef]
- Hernandez-Leon, S. Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island-mass effect”. Mar. Biol. 1991, 109, 141–147. [Google Scholar] [CrossRef]
- Martinez, E.; Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 2004, 31, L18307. [Google Scholar] [CrossRef]
- Hasegawa, D.; Matsuno, T.; Tsutsumi, E.; Senjyu, T.; Endoh, T.; Tanaka, T.; Yoshie, N.; Nakamura, H.; Nishina, A.; Kobari, T.; et al. How a small reef in the Kuroshio cultivates the ocean. Geophys. Res. Lett. 2021, 48, e2020GL092063. [Google Scholar] [CrossRef]
- De Falco, C.; Desbiolles, F.; Bracco, A.; Pasquero, C. Island mass effect: A review of oceanic physical processes. Front. Mar. Sci. 2022, 9, 894860. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Shchepetkin, A.F. Island wakes in deep water. J. Phys. Oceanogr. 2007, 37, 962–981. [Google Scholar] [CrossRef]
- Teinturier, S.; Stegner, A.; Didelle, H.; Viboud, S. Small-scale instabilities of an island wake flow in a rotating shallow-water layer. Dyn. Atmos. Oceans 2010, 49, 1–24. [Google Scholar] [CrossRef]
- Chang, M.-H.; Tang, T.Y.; Ho, C.-R.; Chao, S.-Y. Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. 2013, 118, 1508–1519. [Google Scholar] [CrossRef]
- Sangrà, P.; Auladell, M.; Marrero-Díaz, A.; Pelegrí, J.; Fraile-Nuez, E.; Rodríguez-Santana, A.; Martín, J.; Mason, E.; Hernández-Guerra, A. On the nature of oceanic eddies shed by the island of Gran Canaria. Deep Sea. Res. Part I 2007, 54, 687–709. [Google Scholar] [CrossRef]
- Schütte, F.; Brandt, P.; Karstensen, J. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean. Sci. 2016, 12, 663–685. [Google Scholar] [CrossRef]
- Hasegawa, D.; Yamazaki, H.; Ishimaru, T.; Nagashima, H.; Koike, Y. Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst. 2008, 69, 238–246. [Google Scholar] [CrossRef]
- Friedrich, T.; Powell, B.S.; Stock, C.A.; Hahn-Woernle, L.; Dussin, R.; Curchitser, E.N. Drivers of Phytoplankton Blooms in Hawaii: A Regional Model Study. J. Geophys. Res. 2021, 126, e2020JC017069. [Google Scholar] [CrossRef]
- Kämpf, J. Ocean Modelling for Beginners; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Okubo, A. Oceanic diffusion diagrams. Deep-Sea Res. 1971, 18, 789–802. [Google Scholar] [CrossRef]
- Lawrence, G.A.; Ashley, K.I.; Yonemitsu, N.; Ellis, J.R. Natural dispersion in a small lake. Limnol. Oceanogr. 1995, 40, 1519–1526. [Google Scholar] [CrossRef]
- Luyten, P.J.; Jones, J.E.; Proctor, R.; Tabor, A.; Tett, P.; Wild-Allen, K. COHERENS—A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User Documentation; MUMM Report; Management Unit of the North Sea: Brussels, Belgium, 1999; 914p, Available online: https://uol.de/f/5/inst/icbm/ag/physoz/download/from_emil/COHERENS/print/userguide.pdf (accessed on 20 November 2023).
- Smagorinsky, J. General circulation experiments with the primitive equations. I: The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Kämpf, J. Advanced Ocean Modelling; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Jakobsen, H.H.; Markager, S. Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: Seasonal patterns and relationship to nutrients. Limnol. Oceanogr. 2016, 61, 1853–1868. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Kämpf, J.; Chapman, P. Upwelling System of the World; Springer Nature: New York, NY, USA, 2016. [Google Scholar]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef]
- Su, Z.; Torres, H.; Klein, P.; Thompson, A.F.; Siegelman, L.; Wang, J.; Menemenlis, D.; Hill, C. High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean. J. Geophys. Res. Oceans 2020, 125, e2020JC016544. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kämpf, J. On the Wind-Driven Formation of Plankton Patches in Island Wakes. J. Mar. Sci. Eng. 2024, 12, 193. https://doi.org/10.3390/jmse12010193
Kämpf J. On the Wind-Driven Formation of Plankton Patches in Island Wakes. Journal of Marine Science and Engineering. 2024; 12(1):193. https://doi.org/10.3390/jmse12010193
Chicago/Turabian StyleKämpf, Jochen. 2024. "On the Wind-Driven Formation of Plankton Patches in Island Wakes" Journal of Marine Science and Engineering 12, no. 1: 193. https://doi.org/10.3390/jmse12010193
APA StyleKämpf, J. (2024). On the Wind-Driven Formation of Plankton Patches in Island Wakes. Journal of Marine Science and Engineering, 12(1), 193. https://doi.org/10.3390/jmse12010193