Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines
Abstract
:1. Introduction
2. Methodology
2.1. Wind Turbine Solver
2.2. Multi-Turbine Extension
3. Results: Intercode Comparison
3.1. OC3 Hywind
3.2. W2Power
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamieson, P.; Branney, M. Multi-Rotors; A Solution to 20 MW and Beyond? Energy Procedia 2012, 24, 52–59. [Google Scholar] [CrossRef]
- Xiong, X.-L.; Laima, S.; Li, H. Experimental study of the wake of multi-rotor turbine. Ocean Eng. 2023, 269, 113594. [Google Scholar] [CrossRef]
- Martín-San-Román, R.; Benito-Cia, P.; Azcona-Armendáriz, J.; Cuerva-Tejero, A. Influence of lateral rotor spacing on the benefits in power generated by multi-rotor configurations. J. Phys. Conf. Ser. 2022, 2362, 012024. [Google Scholar] [CrossRef]
- Martin, R. Coupled Dynamics of Multi Wind Turbine Floating Platforms. Ph.D. Thesis, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Madrid, Spain, 2022. [Google Scholar]
- Bae, Y.H.; Kim, M.-H. The Dynamic Coupling Effects of a MUFOWT (Multiple Unit Floating Offshore Wind Turbine) with Partially Broken Blade. J. Ocean Wind. Energy 2015, 2, 89–97. [Google Scholar] [CrossRef]
- Barltrop, N. Multiple Unit Floating Offshore Wind Farm (MUFOW). J. Wind Eng. 1993, 17, 183–188. [Google Scholar]
- Bae, Y. Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- Jonkman, J.; Sclavounos, P. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines. In Proceedings of the ASME Wind Energy Symposium Reno, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Campaña-Alonso, G.; Martín-San-Román, R.; Méndez-López, B.; Benito-Cia, P.; Azcona-Armendáriz, J. OF2: Coupling OpenFAST and OpenFOAM for high-fidelity aero-hydro-servo-elastic FOWT simulations. Wind. Energy Sci. 2023, 8, 1597–1611. [Google Scholar] [CrossRef]
- Brown, K.; Cheung, L.; Hsieh, A.; Maniaci, D.; Hamilton, W. Wake interactions behind individual-tower multirotor wind tur-bine configurations. J. Phys. Conf. Ser. 2023, 2505, 012041. [Google Scholar] [CrossRef]
- El Beshbichi, O.; Xing, Y.; Ong, M.C. Modelica-AeroDyn: Development, benchmark, and application of a comprehensive object-oriented tool for dynamic analysis of non-conventional horizontal-axis floating wind turbines. Wind Energy 2023, 26, 538–572. [Google Scholar] [CrossRef]
- El Beshbichi, O.; Xing, Y.; Ong, M.C. Dynamic analysis of two-rotor wind turbine on spar-type floating platform. Ocean Eng. 2021, 236, 109441. [Google Scholar] [CrossRef]
- Bashetty, S.; Ozcelik, S. Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform. Inventions 2022, 7, 58. [Google Scholar] [CrossRef]
- Martín-San-Román, R.; Benito-Cia, P.; Azcona-Armendáriz, J.; Cuerva-Tejero, A. Validation of a free vortex filament wake module for the integrated simulation of multi-rotor wind turbines. Renew. Energy 2021, 179, 1706–1718. [Google Scholar] [CrossRef]
- van der Laan, M.P.; Andersen, S.J.; García, N.R.; Angelou, N.; Pirrung, G.R.; Ott, S.; Sjöholm, M.; Sørensen, K.H.; Neto, J.X.V.; Kelly, M.; et al. Power curve and wake analyses of the Vestas multi-rotor demonstrator. Wind Energy Sci. 2019, 4, 251–271. [Google Scholar] [CrossRef]
- Ghaisas, N.S.; Ghate, A.S.; Lele, S.K. Large-eddy simulation study of multi-rotor wind turbines. J. Phys. Conf. Ser. 2018, 1037, 072021. [Google Scholar] [CrossRef]
- Lamei, A.; Hayatdavoodi, M.; Riggs, H.R. Motion and elastic response of wind-tracing floating offshore wind turbines. J. Ocean Eng. Mar. Energy 2023, 9, 43–67. [Google Scholar] [CrossRef]
- Serván-Camas, B.; García-Espinosa, J. Accelerated 3D multi-body seakeeping simulations using unstructured finite elements. J. Comput. Phys. 2013, 252, 382–403. [Google Scholar] [CrossRef]
- Servan-Camas, B.; Gutierrez-Romero, J.E.; Garcia-Espinosa, J. A time-domain second-order FEM model for the wave diffraction-radiation problem. Validation with a semisubmersible platform. Mar. Struct. 2018, 58, 278–300. [Google Scholar] [CrossRef]
- International Centre for Numerical Methods in Engineering. Available online: www.cimne.com (accessed on 26 October 2023).
- CompassIS. Available online: www.compassis.com (accessed on 26 October 2023).
- García-Espinosa, J.; Serván-Camas, B.; Calpe-Linares, M. High Fidelity Hydroelastic Analysis Using Modal Matrix Reduction. J. Mar. Sci. Eng. 2023, 11, 1168. [Google Scholar] [CrossRef]
- Jonkman, J.M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine; Technical Report NREL/TP-500-41958; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2007. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report NREL/TP-500-38060; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Jonkman, J. Definition of the Floating System for Phase IV of OC3; Technical Report NREL/TP-500-47535; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Ramachandran, G.K.V.; Robertson, A.; Jonkman, J.M.; Masciola, M.D. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines. In Proceedings of the 23rd International Ocean, Offshore and Polar Engineering Conference, Anchorage, Alaska, 30 June–5 July 2013. [Google Scholar]
- Fibregy Project. Development, Engineering, Production and Life Cycle Management of Improved FIBRE-Based Material Solutions for the Structure and Functional Components of Large Offshore Wind Energy and Tidal Power Platforms; Proposal Materials for Offshore Energy; 2020. Available online: https://fibregy.eu/ (accessed on 26 October 2023).
- Enerocean. Available online: https://enerocean.com/w2power/ (accessed on 26 October 2023).
State Tag | Description |
---|---|
No_fast = 0 | No coupling with OpenFAST |
Fast_initiate = 1 | OpenFAST dll is initialized |
Fast_iterate = 2 | Iteration stage |
Fast_update = 3 | Time step update |
Fast_end = 4 | Computation end |
Unit | Value | ||
---|---|---|---|
Mass (with ballast) | kg | 7,466,330 | |
Downwind distance of CM | m | 0.00 | |
Lateral distance of CM | m | 0.00 | |
Vertical distance of CM | m | −89.9155 | |
Roll inertia about CM | kg·m2 | 4,229,230,000 | |
Pitch inertia about CM | kg·m2 | 4,229,230,000 | |
Yaw inertia about CM | kg·m2 | 164,230,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdugo-Parada, I.; Servan-Camas, B.; Garcia-Espinosa, J. Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines. J. Mar. Sci. Eng. 2024, 12, 85. https://doi.org/10.3390/jmse12010085
Berdugo-Parada I, Servan-Camas B, Garcia-Espinosa J. Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines. Journal of Marine Science and Engineering. 2024; 12(1):85. https://doi.org/10.3390/jmse12010085
Chicago/Turabian StyleBerdugo-Parada, I., B. Servan-Camas, and J. Garcia-Espinosa. 2024. "Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines" Journal of Marine Science and Engineering 12, no. 1: 85. https://doi.org/10.3390/jmse12010085
APA StyleBerdugo-Parada, I., Servan-Camas, B., & Garcia-Espinosa, J. (2024). Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines. Journal of Marine Science and Engineering, 12(1), 85. https://doi.org/10.3390/jmse12010085