Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework
Abstract
:1. Introduction
2. Fuzzy Modeling
3. Proposed Intelligent Fault Diagnosis
4. Marine Equipment
5. Experiments and Results
5.1. Studied Faults
5.2. Models’ Identification
5.3. Process Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazakis, I.; Raptodimos, Y.; Varelas, T. Predicting ship machinery system condition through analytical reliability tools and artificial neural networks. Ocean Eng. 2018, 152, 404–415. [Google Scholar] [CrossRef]
- Lazakis, I.; Gkerekos, C.; Theotokatos, G. Investigating an SVM-driven, one-class approach to estimating ship systems. Ships Offshore Struct. 2018, 14, 432–441. [Google Scholar] [CrossRef]
- Raptodimos, Y.; Lazakis, I. Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships Offshore Struct. 2018, 13, 649–656. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Tian, H.; Jiang, D.; Guo, L.; Wang, G.; Lin, Y. Multi-label classification for simultaneous fault diagnosis of marine machinery: A comparative study. Ocean Eng. 2021, 239, 109723. [Google Scholar] [CrossRef]
- Isermann, R. Process fault detection based on modelling and estimation methods: A survey. Automatica 1984, 20, 387–404. [Google Scholar] [CrossRef]
- Chen, R.; Patton, R. Robust Model-Based Fault Diagnosis for Dynamic Systems; Kluwer Academic Publishers: Boston, MA, USA, 1999; ISBN 978079238411-3. [Google Scholar]
- Sun, X.; Tan, J.; Wen, Y.; Feng, C. Rolling bearing fault diagnosis method based on data-driven random fuzzy evidence acquisition and Dempster–Shafer evidence theory. Adv. Mech. Eng. 2016, 8, 1687814015624834. [Google Scholar] [CrossRef]
- Aslam, S.; Michaelides, M.P.; Herodotou, H. Internet of ships: A survey on architectures, emerging applications, and challenges. IEEE Internet Things J. 2020, 7, 9714–9727. [Google Scholar] [CrossRef]
- Beard, R.V. Failure Accomodation in Linear System through Self-Reorganization. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 1971. Available online: https://dspace.mit.edu/handle/1721.1/16415 (accessed on 24 April 2024).
- Rault, A.; Richalet, A.; Barbot, A.; Sergenton, J.P. Identification and modelling of a jet engine. In Proceedings of the IFAC Symposium of Digital Simulation of Continuous Processes, Gejor, Györ, Hungary, 6–10 September 1971. [Google Scholar]
- Siebert, H.; Isermann, R. Fault Diagnosis Via On-Line Correlation Analysis; Technical report, 25-3; VDI-VDE: Darmstadt, Germany, 1976. (In German) [Google Scholar]
- Himmelblau, D.M. Fault Diagnosis in Chemical and Petrochemical Processes; Elsevier: Amsterdam, The Netherlands, 1978; ISBN 9780444417473. [Google Scholar]
- Ding, X.; Frank, P.M. Fault detection via factorization approach. Syst. Control Lett. 2000, 14, 431–436. [Google Scholar] [CrossRef]
- Han, S.; Shao, H.; Jiang, H.; Zhang, X. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN. Acta Aeronaut. Astronaut. Sin. 2022, 43, 625479. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Q.; Chen, H.; Zhao, J.; Yao, L.; Zhang, J.; Chu, F. A high-accuracy intelligent fault diagnosis method for aero-engine bearings with limited samples. Comput. Ind. 2024, 159–160, 104099. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Zhou, X.; Song, C.; Wu, Y. Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network. Aerospace 2024, 11, 613. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J. Fault diagnosis of marine diesel engines under partial set and cross working conditions based on transfer learning. J. Mar. Sci. Eng. 2023, 11, 1527. [Google Scholar] [CrossRef]
- Zhang, D. Fault diagnosis of ship power equipment based on adaptive neural network. Int. J. Emerg. Electr. Power Syst. 2022, 23, 779–791. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Noh, Y.; Jang, M.-S.; Park, S.; Kim, J.-T. Hierarchical level fault detection and diagnosis of ship engine systems. Expert Syst. Appl. 2023, 213, 118814. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, F.; Pang, B. Online intelligent fault diagnosis of redundant sensors in PWR based on artificial neural network. Front. Energy Res. 2022, 10, 1011362. [Google Scholar] [CrossRef]
- Isermann, R.; Ballé, P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 1997, 5, 709–719. [Google Scholar] [CrossRef]
- Kinnaert, M. Fault diagnosis based on analytical models for linear and nonlinear systems—A tutorial. IFAC Proc. Vol. 2003, 36, 37–50. [Google Scholar] [CrossRef]
- Kougiatsos, N.; Negenborn, R.; Reppa, V. Distributed model-based sensor fault diagnosis of marine fuel engines. IFAC-Pap. 2022, 55, 347–353. [Google Scholar] [CrossRef]
- Kinnaert, M.; Vrancic, D.; Denolin, E.; Juricic, D.; Petrovcic, J. Model-based fault detection and isolation for a gas–liquid separation unit. Control Eng. Pract. 2000, 8, 1273–1283. [Google Scholar] [CrossRef]
- Gertler, J. Fault Detection and Diagnosis in Engineering Systems; Marcel Dekker: New York, NY, USA, 1998; ISBN 0824794273. [Google Scholar]
- Lv, Y.; Yang, X.; Li, Y.; Liu, J.; Li, S. Fault detection and diagnosis of marine diesel engines: A systematic review. Ocean Eng. 2024, 294, 116798. [Google Scholar] [CrossRef]
- Sousa, J.M.; Kaymak, U. Fuzzy Decision Making in Modeling and Control; World Scientific Pub. Co.: Singapore, 2002. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Babuška, R. Fuzzy Modeling for Control; Kluwer Academic Publishers: Boston, MA, USA, 1998; ISBN 9789401148689. [Google Scholar]
- Gustafson, D.E.; Kessel, W.C. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, San Diego, CA, USA, 10–12 January 1979; pp. 761–766. [Google Scholar] [CrossRef]
Faults | Description |
---|---|
F1 | Valve clogging |
F2 | Fully or partly opened bypass valve |
F3 | Flow rate sensor fault |
Input Faults | Fuzzy Model | ||
---|---|---|---|
F1 | F2 | F3 | |
F1 | 0.0156 × 105 | 0.3966 × 105 | 1.8963 × 105 |
F2 | 0.9034 × 105 | 0.0061 × 105 | 1.4996 × 105 |
F3 | 0.7543 × 105 | 0.2836 × 105 | 761.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, L.F.; Sousa, J.M.C.; Vieira, S.M. Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework. J. Mar. Sci. Eng. 2024, 12, 1737. https://doi.org/10.3390/jmse12101737
Mendonça LF, Sousa JMC, Vieira SM. Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework. Journal of Marine Science and Engineering. 2024; 12(10):1737. https://doi.org/10.3390/jmse12101737
Chicago/Turabian StyleMendonça, L. F., J. M. C. Sousa, and S. M. Vieira. 2024. "Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework" Journal of Marine Science and Engineering 12, no. 10: 1737. https://doi.org/10.3390/jmse12101737
APA StyleMendonça, L. F., Sousa, J. M. C., & Vieira, S. M. (2024). Fault Diagnosis of Maritime Equipment Using an Intelligent Fuzzy Framework. Journal of Marine Science and Engineering, 12(10), 1737. https://doi.org/10.3390/jmse12101737