A Numerical Investigation on the Aeroacoustic Noise Emission from Offshore Wind Turbine Wake Interference
Abstract
:1. Introduction
- (1)
- The AM noise characteristics of the A-weighted overall sound pressure level (OASPL) signal were explored to verify the correctness of this numerical simulation method.
- (2)
- Under the condition of steady wind inflow, the influence of wake interference on the aerodynamic noise of a WT was preliminarily compared and analyzed. Both 8 m/s and 12 m/s were considered as two wind speed conditions.
- (3)
- Under the condition of turbulent wind inflow, the influence of wind speed on the aerodynamic noise of a single WT was investigated, as well as the sensitivity of the noise signal to turbulence.
- (4)
- Based on one study (3), two wind speeds, 8 m/s and 12 m/s, were selected, and the difference in and optimal performance of aerodynamic noise when the WT was or was not suffering from wake interference were further verified and analyzed in combination with the WT’s output parameters. The most sensitive observer position was also explored under multiple microphone settings.
2. Methods and Materials
2.1. Dynamic Analysis Tool
2.2. Turbine Characteristics
2.3. Aeroacoustic Noise Calculation
2.3.1. Amiet and Simplified Guidati Model
2.3.2. BPM Model
Turbulent Boundary Layer–Trailing Edge Noise
Tip Vortex Noise
Trailing Edge Bluntness Noise
2.3.3. A-Weighting
2.4. WT Reference Coordinate System and Direction Setting
2.5. Ambient Wind Conditions
2.6. Simulation Settings
3. Simulation Results
3.1. Observer Location Setting
3.2. AM Noise Verification and Analysis
3.3. Steady Wind Conditions
3.3.1. Below Rated Wind Speed of 8 m/s
3.3.2. Above Rated Wind Speed of 12 m/s
3.4. Influence of Wind Speed and Turbulence on OASPL Signals
3.5. Turbulent Wind Conditions
3.5.1. Below Rated Wind Speed of 8 m/s
3.5.2. Above Rated Wind Speed of 12 m/s
4. Discussion and Conclusions
- The WT wake will affect the aeroacoustic noise emission of the downstream WT, which can be reflected in the acoustic signals. Hence, the acoustic detection method of wake interference is feasible.
- The influence of the wake deficit effect on OASPL signals is dominant at 8 m/s. Thus, the influence of wake turbulence is dominant at 12 m/s. These effects are expressed in the absolute value of the OASPL in the time domain. The wake deficit will reduce the downstream wind speed, which will reduce the rotor speed of the WT and indirectly reduce the absolute value of the OASPL by about 6 dBA, while the wake turbulence will increase it marginally.
- Wake turbulence will cause larger fluctuations in the OASPL. Compared with the WT that is not affected by wake interference, the OASPL of the affected WT fluctuates within about 9 dBA larger maximum and minimum limits, which is more obvious at 8 m/s. However, such influence will be weakened by the increase in wind speed.
- In the frequency domain, the wake interference will make the spectrum of the OASPL have a wider frequency band and will show more obvious sub-peaks at 8 m/s. Wake interference will reduce tip vortex noise emission so that the OASPL spectrum’s frequency peak will be reduced to 12 m/s.
- If the acoustic method is used for wake interference detection in the future, it is recommended to place the microphone at the position of Observer 4. The distance from the lower part of the tower and its calculation will be according to the IEC61400-11 standard. Based on the work in this paper, it is found that the microphone at this position is more sensitive to wake interference. Furthermore, the wake interference acoustic detection method is recommended at low wind speeds.
5. Limitations and Perspectives
- The wake model used in this paper is of medium fidelity, while the TI noise is low-frequency. The model used in this paper does not present the calculation results well, so the results obtained may deviate from the actual situation. A higher-fidelity wake model and more precise TI noise calculation model can be used for related research in the future.
- In all simulations, the wake meandering setting is left as default as the official one, and the effects of turbulence intensity and wind shear index will be studied later.
- In this paper, the analysis objects are all A-weighted OASPLs, and the non-A-weighted OASPL and the differences between the two parameters will be explored in a future study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayron, P.; Kelso, R.; Chin, R. Experimental analysis of co-rotating and counter-rotating tandem horizontal-axis wind turbine performance and wake dynamics. J. Wind Eng. Ind. Aerodyn. 2024, 253, 105840. [Google Scholar] [CrossRef]
- Sergiienko, N.Y.; da Silva, L.S.P.; Bachynski-Polić, E.E.; Cazzolato, B.S.; Arjomandi, M.; Ding, B. Review of scaling laws applied to floating offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 162, 112477. [Google Scholar] [CrossRef]
- Alex. Global Wind Report 2024; Global Wind Energy Council: Singapore, 2024. [Google Scholar]
- Ata Teneler, A.; Hassoy, H. Health effects of wind turbines: A review of the literature between 2010–2020. Int. J. Environ. Health Res. 2023, 33, 143–157. [Google Scholar] [CrossRef]
- Cheng, Z.; Lien, F.-S.; Yee, E.; Meng, H. A unified framework for aeroacoustics simulation of wind turbines. Renew. Energy 2022, 188, 299–319. [Google Scholar] [CrossRef]
- Thomsen, F.; Stöber, U.; Sarnocińska-Kot, J. Hearing Impact on Marine Mammals Due to Underwater Sound from Future Wind Farms. In The Effects of Noise on Aquatic Life: Principles and Practical Considerations; Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–7. [Google Scholar]
- Siddagangaiah, S.; Chen, C.F.; Hu, W.-C.; Akamatsu, T.; Pieretti, N. Assessing the influence of offshore wind turbine noise on seasonal fish chorusing. ICES J. Mar. Sci. 2024, 0, fsae061. [Google Scholar] [CrossRef]
- Ishihara, T.; Qian, G.-W. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J. Wind Eng. Ind. Aerodyn. 2018, 177, 275–292. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.-B.; Liang, X.-F. IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions. Energy 2022, 238, 121772. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhao, L.; Wei, Z.; Yu, M.; Xue, Y. Wake Interactions of Two Tandem Semisubmersible Floating Offshore Wind Turbines Based on FAST.Farm. J. Mar. Sci. Eng. 2022, 10, 1962. [Google Scholar] [CrossRef]
- Kuang, L.; Katsuchi, H.; Zhou, D.; Chen, Y.; Han, Z.; Zhang, K.; Wang, J.; Bao, Y.; Cao, Y.; Liu, Y. Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement. Appl. Energy 2023, 351, 121850. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Hansen, K.S.; Pryor, S.C. Meteorological Controls on Wind Turbine Wakes. Proc. IEEE 2013, 101, 1010–1019. [Google Scholar] [CrossRef]
- Zhao, L.; Gong, F.; Chen, S.; Wang, J.; Xue, L.; Xue, Y. Optimization study of control strategy for combined multi-wind turbines energy production and loads during wake effects. Energy Rep. 2022, 8, 1098–1107. [Google Scholar] [CrossRef]
- Zhao, L.; Gong, Y.; Gong, F.; Zheng, B.; Wang, J.; Xue, L.; Xue, Y. Study on Mitigation of Wake Interference by Combined Control of Yaw Misalignment and Pitch. J. Mar. Sci. Eng. 2023, 11, 1288. [Google Scholar] [CrossRef]
- Rotta, J. On the Theory of the Turbulent Boundary Layer; NASA: Washington, DC, USA, 1953.
- Clauser, F.H. The Turbulent Boundary Layer. Adv. Appl. Mech. 1956, 4, 1–51. [Google Scholar]
- Coull, J.D.; Hodson, H.P. Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 2011, 681, 370–410. [Google Scholar] [CrossRef]
- Harun, Z.; Monty, J.P.; Mathis, R.; Marusic, I. Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 2013, 715, 477–498. [Google Scholar] [CrossRef]
- Sajadmanesh, S.M.; Mohseni, A.; Mojaddam, M. Vortex dynamics mechanisms of separated boundary layer in a highly loaded low pressure turbine cascade. Int. J. Heat Fluid Flow 2020, 82, 108540. [Google Scholar] [CrossRef]
- Goldstein, M.E. Aeroacoustics; McGraw Hill: New York, NY, USA, 1976. [Google Scholar]
- Lilley, G. On the Noise from Jets. 1974. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7530050182 (accessed on 12 September 2024).
- Lee, S.; Ayton, L.; Bertagnolio, F.; Moreau, S.; Chong, T.P.; Joseph, P. Turbulent boundary layer trailing-edge noise: Theorycomputation, experiment, and application. Prog. Aerosp. Sci. 2021, 126, 100737. [Google Scholar] [CrossRef]
- Amiri, M.M.; Shadman, M.; Estefen, S.F. A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes. Renew. Sustain. Energy Rev. 2024, 193, 114279. [Google Scholar] [CrossRef]
- IEEE Std 2400-2016; IEEE Standard for Wind Turbine Aero Acoustic Noise Measurement Techniques. IEEE: Piscataway Township, NJ, USA, 2016; pp. 1–24. [CrossRef]
- Kim, J.; Haeri, S.; Joseph, P. On the reduction of aerofoil–turbulence interaction noise associated with wavy leading edges. J. Fluid Mech. 2016, 792, 526–552. [Google Scholar] [CrossRef]
- Jiang, M.; Li, X.; Bai, B.; Lin, D. Numerical simulation on the NACA0018 airfoil self-noise generation. Theor. Appl. Mech. Lett. 2012, 2, 052004. [Google Scholar] [CrossRef]
- Amiet, R.K. Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 1975, 41, 407–420. [Google Scholar] [CrossRef]
- Brooks, T.F.; Pope, D.S.; Marcolini, M.A. Airfoil Self-Noise and Prediction; NASA: Washington, DC, USA, 1989.
- Wang, H.; Chen, B. Investigation on aerodynamic noise for leading edge erosion of wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2023, 240, 105484. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Y.; Zhao, Y.; Xue, Y. Studies on the Experimental Measurement of the Low-Frequency Aerodynamic Noise of Large Wind Turbines. Energies 2024, 17, 1609. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; El-Shorbagy, M.A. Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renew. Energy 2018, 123, 748–755. [Google Scholar] [CrossRef]
- Parchen, R.R. Progress Report DRAW: A Prediction Scheme for Trailing Edge Noise Based on Detailed Boundary Layer Characteristics; TNO Institute of Applied Physics: Delft, The Netherlands, 1998. [Google Scholar]
- Paterson, R.; Amiet, R. Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence. In Proceedings of the 3rd Aeroacoustics Conference, Palo Alto, CA, USA, 20–23 July 1976; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1976. [Google Scholar]
- Guidati, G.; Bareiss, R.; Wagner, S.; Parchen, R.; Guidati, G.; Bareiss, R.; Wagner, S.; Parchen, R. Simulation and measurement of inflow-turbulence noise on airfoils. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Aeroacoustics Conferences, Atlanta, GA, USA, 12–14 May 1997; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar]
- Moriarty, P.; Migliore, P. Semi-Empirical Aeroacoustic Noise Prediction Code for Wind Turbines; NREL/TP-500-34478; National Renewable Energy Laboratory: Golden, CO, USA, 2003; p. 15006098.
- Zhao, L.; Xue, L.; Li, Z.; Wang, J.; Yang, Z.; Xue, Y. Progress on Offshore Wind Farm Dynamic Wake Management for Energy. J. Mar. Sci. Eng. 2022, 10, 1395. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Lee, S.; Moriarty, P.J.; Hao, Y.; Lackner, M.A.; Barthelmie, R.; Lundquist, J.K.; Oxley, G. A Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant. In 33rd Wind Energy Symposium; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar]
- Larsen, G.C.; Madsen Aagaard, H.; Bingöl, F.; Mann, J.; Ott, S.; Sørensen, J.N.; Okulov, V.; Troldborg, N.; Nielsen, N.M.; Thomsen, K.; et al. Dynamic Wake Meandering Modeling; Risø National Laboratory: Roskilde, Denmark, 2007; ISBN 978-87-550-3602-4. [Google Scholar]
- Petricelli, F.; Chaitanya, P.; Palleja-Cabre, S.; Meloni, S.; Joseph, P.F.; Karimian, A.; Palani, S.; Camussi, R. An experimental investigation on the effect of in-flow distortions of propeller noise. Appl. Acoust. 2023, 214, 109682. [Google Scholar] [CrossRef]
- Celik, A.; Syafiqah Jamaluddin, N.; Baskaran, K.; Meloni, S.; Rezgui, D.; Azarpeyvand, M. Experimental characterisation of rotor noise in tandem configuration. Appl. Acoust. 2024, 222, 110053. [Google Scholar] [CrossRef]
- Zaman, I.; Falsi, M.; Zang, B.; Azarpeyvand, M.; Meloni, S. On the aeroacoustics of turbulent boundary layer ingesting propellers. Phys. Fluids 2024, 36, 075172. [Google Scholar] [CrossRef]
- Heimann, D.; Käsler, Y.; Gross, G. The wake of a wind turbine and its influence on sound propagation. Meteorol. Z. 2011, 20, 449–460. [Google Scholar] [CrossRef]
- Barlas, E.; Zhu, W.J.; Shen, W.Z.; Kelly, M.; Andersen, S.J. Effects of wind turbine wake on atmospheric sound propagation. Appl. Acoust. 2017, 122, 51–61. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Aa Madsen, H.; Fischer, A. Noise emission from wind turbines in wake - Measurement and modeling: The Science of Making Torque from Wind 2018. J. Phys. Conf. Ser. 2018, 1037, 022001. [Google Scholar] [CrossRef]
- Jonkman, J.; Shaler, K. FAST.Farm User’s Guide and Theory Manual; National Renewable Energy Laboratory: Golden, CO, USA, 2021.
- National Renewable Energy Laboratory. OpenFAST Documentation—OpenFAST v3.5.3 Documentation; National Renewable Energy Laboratory: Golden, CO, USA, 2023.
- Bortolotti, P.; Tarres, H.C.; Dykes, K.L.; Merz, K.; Sethuraman, L.; Verelst, D.; Zahle, F. IEA Wind TCP Task 37: Systems Engineering in Wind Energy-WP2.1 Reference Wind Turbines; NREL/TP-5000-73492; National Renewable Energy Laboratory: Golden, CO, USA, 2019.
- Bortolotti, P.; Branlard, E.; Platt, A.; Moriarty, P.; Sucameli, C.; Bottasso, C. Aeroacoustics Noise Model of OpenFAST; NREL/TP–5000-75731; National Renewable Energy Laboratory: Golden, CO, USA, 2020; p. 1660130.
- Moriarty, P.; Guidati, G.; Migliore, P. Recent Improvement of a Semi-Empirical Aeroacoustic Prediction Code for Wind Turbines. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Aeroacoustics Conferences, Manchester, UK, 10–12 May 2004; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004. [Google Scholar]
- Zhu, W.J.; Heilskov, N.; Shen, W.Z.; Sørensen, J.N. Modeling of Aerodynamically Generated Noise From Wind Turbines. J. Sol. Energy Eng. 2005, 127, 517–528. [Google Scholar] [CrossRef]
- Moriarty, P.; Guidati, G.; Migliore, P. Prediction of Turbulent Inflow and Trailing-Edge Noise for Wind Turbines. In Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, USA, 23–25 May 2005; Aeroacoustics Conferences. American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2005. [Google Scholar]
- Jonkman, B.J. TurbSim User’s Guide; NREL/TP-500-39797; National Renewable Energy Laboratory: Golden, CO, USA, 2006.
- IEC 61400-3; Wind Turbines–Part 3: Design Requirements for Offshore Wind Turbines. GlobalSpec: Albany, NY, USA, 2019.
- IEC 61400-11; Wind Turbines–Part 11: Acoustic Noise Measurement Techniques. EIRIE: Springfield, OH, USA, 2012.
Aerodynamic Noise Type | Computational Model |
---|---|
Airfoil self-noise | BPM |
TI noise | Amiet + Simplified Guidati |
Parameters | Value | Parameters | Value |
---|---|---|---|
Rotor diameter | 130 m | Nacelle tilt angle | 5° |
Hub height | 110 m | Rated rotor speed | 11.75 rpm |
Cut-in wind speed | 4 m/s | Rated tip–speed ratio | 8.16 m/s |
Cut-out wind speed | 25 m/s | Max tip–speed ratio | 80 m/s |
Rated electrical power | 3.37 MW | Maximum aerodynamic Cp | 0.418 |
Parameter | Value | |
---|---|---|
Mean wind speed | 8 m/s | 12 m/s |
TI | 0.06 | |
Turbulence model | IECKAI | |
Shear power law exponent | 0.20 |
Name | Location Coordinates | Name | Location Coordinates |
---|---|---|---|
Observer 1 | (−124, −124, 0) | Observer 7 | (−124, 124, 0) |
Observer 2 | (0, −175, 0) | Observer 8 | (−175, 0, 0) |
Observer 3 | (124, −124, 0) | Observer 9 | (175, 0, 90) |
Observer 4 | (175, 0, 0) | Observer 10 | (175, 0, 110) |
Observer 5 | (124, 124, 0) | Observer 11 | (0, 0, 110) |
Observer 6 | (0, 175, 0) | Observer 12 | (0, 0, 0) |
Name | Mean Value of OASPL (NW) (dBA) | Mean Value of OASPL (NW) (dBA) | Augmentation (dBA) |
---|---|---|---|
Observer 1 | 54.65 | 48.82 | 5.83 |
Observer 2 | 46.52 | 40.89 | 5.63 |
Observer 3 | 55.16 | 49.41 | 5.75 |
Observer 4 | 55.32 | 49.34 | 5.98 |
Observer 5 | 55.22 | 48.90 | 6.32 |
Observer 6 | 46.65 | 40.15 | 6.50 |
Observer 7 | 54.74 | 48.68 | 6.06 |
Observer 8 | 55.91 | 50.04 | 5.87 |
Observer 9 | 56.15 | 49.95 | 6.20 |
Observer 10 | 56.19 | 49.90 | 6.29 |
Observer 11 | 38.14 | 31.88 | 6.26 |
Observer 12 | 57.82 | 51.80 | 6.02 |
Observer Location | Difference Between Max and Min Value of OASPL (NW) (dBA) | Difference Between Max and Min Value of OASPL (HW) (dBA) | Augmentation (dBA) |
---|---|---|---|
Observer 1 | 7.82 | 16.07 | 8.25 |
Observer 2 | 18.17 | 26.03 | 7.86 |
Observer 3 | 6.43 | 14.55 | 8.12 |
Observer 4 | 4.92 | 14.23 | 9.31 |
Observer 5 | 6.53 | 16.19 | 9.66 |
Observer 6 | 17.97 | 28.20 | 10.23 |
Observer 7 | 8.11 | 17.29 | 9.18 |
Observer 8 | 5.48 | 14.29 | 8.81 |
Observer 9 | 4.60 | 14.07 | 9.47 |
Observer 10 | 4.71 | 14.18 | 9.47 |
Observer 11 | 5.44 | 13.36 | 7.92 |
Observer 12 | 18.46 | 26.79 | 8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Xue, L.; Wang, J.; Yang, Z.; Xue, Y. A Numerical Investigation on the Aeroacoustic Noise Emission from Offshore Wind Turbine Wake Interference. J. Mar. Sci. Eng. 2024, 12, 1988. https://doi.org/10.3390/jmse12111988
Yan Y, Xue L, Wang J, Yang Z, Xue Y. A Numerical Investigation on the Aeroacoustic Noise Emission from Offshore Wind Turbine Wake Interference. Journal of Marine Science and Engineering. 2024; 12(11):1988. https://doi.org/10.3390/jmse12111988
Chicago/Turabian StyleYan, Yan, Lei Xue, Jundong Wang, Zhichao Yang, and Yu Xue. 2024. "A Numerical Investigation on the Aeroacoustic Noise Emission from Offshore Wind Turbine Wake Interference" Journal of Marine Science and Engineering 12, no. 11: 1988. https://doi.org/10.3390/jmse12111988
APA StyleYan, Y., Xue, L., Wang, J., Yang, Z., & Xue, Y. (2024). A Numerical Investigation on the Aeroacoustic Noise Emission from Offshore Wind Turbine Wake Interference. Journal of Marine Science and Engineering, 12(11), 1988. https://doi.org/10.3390/jmse12111988