Waves Generated by the Horizontal Motions of a Bottom Disturbance
Abstract
:1. Introduction
2. Theories
2.1. The GN Equations
2.2. The Navier–Stokes (NS) Equations
3. The Moving Disturbance
4. Numerical Setup and Solution
4.1. The GN Modeling
4.2. The NS Modeling
5. Wave Generation by the Motion of a Bottom Disturbance
6. Results: Single Motion of the Bottom Disturbance
6.1. Comparisons with the Available Data
6.2. Snapshots of the Velocity and Pressure Fields
6.3. Effect of Disturbance Amplitude
6.4. Effect of the Motion Speed
7. Results: Oscillatory Motion of the Bottom Disturbance
7.1. Snapshots of the Velocity and Pressure Fields
7.2. Effect of Disturbance Amplitude
7.3. Effect of Oscillation Amplitude
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ioualalen, M.; Pelletier, B.; Watts, P.; Régnier, M. Numerical modeling of the 26 November 1999 Vanuatu tsunami. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Pampell-Manis, A.; Horrillo, J.; Shigihara, Y.; Parambath, L. Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico. J. Geophys. Res. Ocean. 2016, 121, 1009–1027. [Google Scholar] [CrossRef]
- Gylfadóttir, S.S.; Kim, J.; Helgason, J.K.; Brynjólfsson, S.; Höskuldsson, Á.; Jóhannesson, T.; Harbitz, C.B.; Løvholt, F. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data. J. Geophys. Res. Ocean. 2017, 122, 4110–4122. [Google Scholar] [CrossRef]
- Abadie, S.M.; Harris, J.C.; Grilli, S.T.; Fabre, R. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Lee, C.H.; Huang, Z. Multi-phase flow simulation of impulsive waves generated by a sub-aerial granular landslide on an erodible slope. Landslides 2021, 18, 881–895. [Google Scholar] [CrossRef]
- Paris, A.; Heinrich, P.; Abadie, S. Landslide tsunamis: Comparison between depth-averaged and Navier–Stokes models. Coast. Eng. 2021, 170, 104022. [Google Scholar] [CrossRef]
- Pedersen, G.; Gjevik, B. Run-up of solitary waves. J. Fluid Mech. 1983, 135, 283–299. [Google Scholar] [CrossRef]
- Tadepalli, S.; Synolakis, C.E. The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1994, 445, 99–112. [Google Scholar]
- Liu, P.L.F.; Cho, Y.S.; Briggs, M.J.; Kanoglu, U.; Synolakis, C.E. Runup of solitary waves on a circular island. J. Fluid Mech. 1995, 302, 259–285. [Google Scholar] [CrossRef]
- Liang, D.; Gotoh, H.; Khayyer, A.; Chen, J.M. Boussinesq modelling of solitary wave and N-wave runup on coast. Appl. Ocean Res. 2013, 42, 144–154. [Google Scholar] [CrossRef]
- Xie, P.; Du, Y. Tsunami wave generation in Navier–Stokes solver and the effect of leading trough on wave run-up. Coast. Eng. 2023, 182, 104293. [Google Scholar] [CrossRef]
- Madsen, P.A.; Schaeffer, H.A. Analytical solutions for tsunami runup on a plane beach: Single waves, N-waves and transient waves. J. Fluid Mech. 2010, 645, 27–57. [Google Scholar] [CrossRef]
- Hammack, J.L. A note on tsunamis: Their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 1973, 60, 769–799. [Google Scholar] [CrossRef]
- Jamin, T.; Gordillo, L.; Ruiz-Chavarría, G.; Berhanu, M.; Falcon, E. Experiments on generation of surface waves by an underwater moving bottom. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150069. [Google Scholar] [CrossRef]
- Lu, H.; Park, Y.S.; Cho, Y.S. Investigation of long waves generated by bottom-tilting wave maker. Coast. Eng. 2017, 59, 1750018. [Google Scholar] [CrossRef]
- Bahena-Jimenez, S.; Bautista, E.; Méndez, F. Tsunami generation by a seabed deformation in the presence of a viscoelastic mud. Phys. Fluids 2023, 35, 012116. [Google Scholar] [CrossRef]
- Tinti, S.; Bortolucci, E. Energy of water waves induced by submarine landslides. Pure Appl. Geophys. 2000, 157, 281–318. [Google Scholar] [CrossRef]
- Whittaker, C.N. Modelling of Tsunami Generated by the Motion of a Rigid Block Along a Horizontal Boundary. Ph.D. Dissertation, University of Canterbury, Christchurch, New Zealand, 2014. [Google Scholar]
- Lo, H.Y.; Liu, P.L.F. On the analytical solutions for water waves generated by a prescribed landslide. J. Fluid Mech. 2017, 821, 85–116. [Google Scholar] [CrossRef]
- Beji, S. Improved Boussinesq-type equations for spatially and temporally varying bottom. Coast. Eng. J. 2018, 60, 318–326. [Google Scholar] [CrossRef]
- Si, P.; Shi, H.; Yu, X. A general numerical model for surface waves generated by granular material intruding into a water body. Coast. Eng. 2018, 142, 42–51. [Google Scholar] [CrossRef]
- Yu, M.L.; Lee, C.H. Multi-phase-flow modeling of underwater landslides on an inclined plane and consequently generated waves. Adv. Water Resour. 2019, 133, 103421. [Google Scholar] [CrossRef]
- Rauter, M.; Viroulet, S.; Gylfadóttir, S.S.; Fellin, W.; Løvholt, F. Granular porous landslide tsunami modelling–the 2014 Lake Askja flank collapse. Nat. Commun. 2022, 13, 678. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, R.C.; Webster, W.C.; Wehausen, J.V. Waves caused by a moving disturbance in a shallow channel of finite width. J. Fluid Mech. 1986, 169, 275–292. [Google Scholar] [CrossRef]
- Wu, T.Y.T. Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 1987, 184, 75–99. [Google Scholar] [CrossRef]
- Grue, J. Ship generated mini-tsunamis. J. Fluid Mech. 2017, 816, 142–166. [Google Scholar] [CrossRef]
- Yao, J.; Bingham, H.B.; Zhang, X. Nonlinear effects of variable bathymetry and free surface on mini-tsunamis generated by a moving ship. Phys. Rev. Fluids 2023, 8, 094801. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, L.; Ward, S.N. Tsunami Squares modeling of landslide tsunami generation considering the ‘Push Ahead’ effects in slide/water interactions: Theory, experimental validation, and sensitivity analyses. Eng. Geol. 2021, 288, 106141. [Google Scholar] [CrossRef]
- Kostitsyna, O.; Nosov, M.; Shelkovnikov, N. Numerical modelling of the tsunami generation process by the moving sea bottom displacement. Phys. Oceanogr. 1994, 5, 231–235. [Google Scholar] [CrossRef]
- Pelinovsky, E.; Poplavsky, A. Simplified model of tsunami generation by submarine landslides. Phys. Chem. Earth 1996, 21, 13–17. [Google Scholar] [CrossRef]
- Hayir, A. The near-field tsunami amplitudes caused by submarine landslides and slumps spreading in two orthogonal directions. Ocean. Eng. 2006, 33, 654–664. [Google Scholar] [CrossRef]
- Jing, H.; Chen, G.; Liu, C.; Wang, W.; Zuo, J. Dispersive effects of water waves generated by submerged landslide. Nat. Hazards 2020, 103, 1917–1941. [Google Scholar] [CrossRef]
- Jing, H.; Gao, Y.; Liu, C.; Hou, J. Far-field characteristics of linear water waves generated by a submerged landslide over a flat seabed. J. Mar. Sci. Eng. 2020, 8, 196. [Google Scholar] [CrossRef]
- Lo, P.H.Y. Analytical and numerical investigation on the energy of free and locked tsunami waves generated by a submarine landslide. Phys. Fluids 2023, 35, 046601. [Google Scholar]
- Ertekin, R.C. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and Experiment. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1984. [Google Scholar]
- Wu, T.Y. Long waves in ocean and coastal waters. J. Eng. Mech. Div. 1981, 107, 501–522. [Google Scholar] [CrossRef]
- Schember, H.R. A New Model for Three-Dimensional Nonlinear Dispersive Long Waves. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1982. [Google Scholar]
- Zhao, B.B.; Duan, W.Y.; Webster, W.C. Tsunami simulation with Green–Naghdi theory. Ocean. Eng. 2011, 38, 389–396. [Google Scholar] [CrossRef]
- Whittaker, C.N.; Nokes, R.I.; Lo, H.Y.; Liu, P.L.F.; Davidson, M.J. Physical and numerical modelling of tsunami generation by a moving obstacle at the bottom boundary. Environ. Fluid Mech. 2017, 17, 929–958. [Google Scholar] [CrossRef]
- Renzi, E.; Michele, S.; Borthwick, A.; Raby, A. Lagrangian modelling of nonlinear viscous waves generated by moving seabed deformation. Eur. J. Mech.-B/Fluids 2023, 99, 23–33. [Google Scholar] [CrossRef]
- Mahjouri, S.; Shabani, R.; Badiei, P.; Rezazadeh, G. A bottom mounted wavemaker in water wave flumes. J. Hydraul. Res. 2021, 59, 662–669. [Google Scholar] [CrossRef]
- Chen, Y.B.; Hayatdavoodi, M.; Zhao, B.B.; Ertekin, R.C. Waves generated by horizontally oscillating bottom disturbances. In Proceedings of the 38th International Workshop on Water Waves and Floating Bodies (IWWWFB), Ann Arbor, MI, USA, 7–10 May 2023; pp. 1–4. [Google Scholar]
- Grimshaw, R.H.; Maleewong, M. Transcritical flow over two obstacles: Forced Korteweg–de Vries framework. J. Fluid Mech. 2016, 809, 918–940. [Google Scholar] [CrossRef]
- Viotti, C.; Dutykh, D.; Dias, F. The conformal-mapping method for surface gravity waves in the presence of variable bathymetry and mean current. Procedia IUTAM 2014, 11, 110–118. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Pelinovsky, E. Soliton interactions with an external forcing: The modified Korteweg–de Vries framework. Chaos Solitons Fractals 2022, 165, 112889. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Ertekin, R.C. Diffraction and refraction of nonlinear waves by the Green–Naghdi equations. J. Offshore Mech. Arct. Eng. 2023, 145, 021201. [Google Scholar] [CrossRef]
- Kostikov, V.K.; Hayatdavoodi, M.; Ertekin, R.C. Nonlinear waves propagating over a deformable seafloor. Phys. Fluids 2024, 36, 096617. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 1976, 78, 237–246. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. Directed fluid sheets. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 347, 447–473. [Google Scholar]
- Kostikov, V.; Hayatdavoodi, M.; Ertekin, R.C. Hydroelastic interaction of nonlinear waves with floating sheets. Theor. Comput. Fluid Dyn. 2021, 35, 515–537. [Google Scholar] [CrossRef]
- Ertekin, R.C.; Hayatdavoodi, M.; Kim, J.W. On some solitary and cnoidal wave diffraction solutions of the Green–Naghdi equations. Appl. Ocean Res. 2014, 47, 125–137. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Ertekin, R.C. Wave forces on a submerged horizontal plate—Part I: Theory and modelling. J. Fluids Struct. 2015, 54, 566–579. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Ertekin, R.C. Nonlinear Wave Loads on a Submerged Deck by the Green-Naghdi Equations. J. Offshore Mech. Arct. Eng. 2015, 137, 11102. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Treichel, K.; Ertekin, R.C. Parametric study of nonlinear wave loads on submerged decks in shallow water. J. Fluids Struct. 2019, 86, 266–289. [Google Scholar] [CrossRef]
- Zhao, B.B.; Duan, W.Y.; Ertekin, R.C.; Hayatdavoodi, M. High-level Green-Naghdi wave models for nonlinear wave transformation in three dimensions. J. Ocean Eng. Mar. Energy 2015, 1, 121–132. [Google Scholar] [CrossRef]
- Zhao, B.B.; Wang, Z.; Duan, W.Y.; Ertekin, R.C.; Hayatdavoodi, M.; Zhang, T.Y. Experimental and numerical studies on internal solitary waves with a free surface. J. Fluid Mech. 2020, 899, A17. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, B.B.; Duan, W.Y.; Ertekin, R.C.; Hayatdavoodi, M.; Zhang, T.Y. On solitary wave in nonuniform shear currents. J. Hydrodyn. 2020, 32, 800–805. [Google Scholar] [CrossRef]
- Duan, S.L.; Zhao, B.B.; Webster, W.C. Green-Naghdi Theory, Part B: Green-Naghdi Equations for Deep Water Waves. J. Mar. Sci. Appl. 2023, 22, 44–51. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Seiffert, B.; Ertekin, R.C. Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. J. Ocean Eng. Mar. Energy 2015, 1, 77–99. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Chen, Y.B.; Zhao, B.B.; Ertekin, R.C. Experiments and computations of wave-induced oscillations of submerged horizontal plates. Phys. Fluids 2023, 35, 017121. [Google Scholar] [CrossRef]
- Rusche, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. Ph.D. Dissertation, Imperial College London, London, UK, 2003. [Google Scholar]
- Gopala, V.R.; van Wachem, B.G. Volume of fluid methods for immiscible-fluid and free-surface flows. Chem. Eng. J. 2008, 141, 204–221. [Google Scholar] [CrossRef]
- Weller, H.G. A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow; Report TR/HGW; OpenCFD Ltd.: Bracknell, UK, 2008; Volume 4, p. 35. [Google Scholar]
- Zhao, B.B.; Zhang, T.Y.; Duan, W.Y.; Wang, Z.; Guo, X.Y.; Hayatdavoodi, M.; Ertekin, R.C. Internal solitary waves generated by a moving bottom disturbance. J. Fluid Mech. 2023, 963, A32. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Neil, D.R.; Ertekin, R.C. Diffraction of cnoidal waves by vertical cylinders in shallow water. Theor. Comput. Fluid Dyn. 2018, 32, 561–591. [Google Scholar] [CrossRef]
- Hayatdavoodi, M.; Ertekin, R.C. Wave forces on a submerged horizontal plate—Part II: Solitary and cnoidal waves. J. Fluids Struct. 2015, 54, 580–596. [Google Scholar] [CrossRef]
- Ferziger, J.; Perić, M.; Street, R. Computational Methods for Fluid Dynamics, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Jasak, H.; Tuković, Ž. Automatic mesh motion for the unstructured finite volume method. Trans. FAMENA 2006, 30, 1–20. [Google Scholar]
- Jasak, H. Dynamic mesh handling in OpenFOAM. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Hayatdavoodi, M.; Ertekin, R.C.; Valentine, B.D. Solitary and cnoidal wave scattering by a submerged horizontal plate in shallow water. AIP Adv. 2017, 7, 065212. [Google Scholar] [CrossRef]
- Ertekin, R.C.; Wehausen, J.V. Some Soliton Calculations. In Proceedings of the 16th Symposium on Naval Hydrodynamics, Berkeley, CA, USA, 13–18 July 1986; pp. 167–184. [Google Scholar]
- Chen, X.B.; Li, R.P. Reformulation of wavenumber integrals describing transient waves. J. Eng. Math. 2019, 115, 121–140. [Google Scholar] [CrossRef]
- Chen, X.B.; Zhao, B.B.; Li, R.P. Mysterious wavefront and nonlinear effects. In Proceedings of the Workshop on Nonlinear Waves—Theory, Computation and Real-World Applications, Sanya, China, 7–11 January 2019; pp. 1–5. [Google Scholar]
- Kim, J.; Baquet, A.; Jang, H. Wave propagation in CFD-based numerical wave tank. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, OMAE2019, Glasgow, UK, 9–14 June 2019; p. 96460. [Google Scholar]
Configurations | (Above and Below the Free Surface) | CPU Time (Hours) | |
---|---|---|---|
Mesh 1 | /50 | /10 | 0.91 |
Mesh 2 | /100 | /10 | 3.22 |
Mesh 3 | /200 | /10 | 12.74 |
Mesh 4 | /100 | /5 | 3.69 |
Mesh 5 | /100 | /20 | 3.68 |
(Between GI and GII) | (Between GII and GIII) | (Between GIII and GIV) | |
---|---|---|---|
0.4 | 1.025 | 1.023 | 1.005 |
0.5 | 1.031 | 1.015 | 1.023 |
0.6 | 1.025 | 1.005 | 1.005 |
0.7 | 0.972 | 0.995 | 0.998 |
0.8 | 0.969 | 0.983 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hayatdavoodi, M.; Zhao, B.; Ertekin, R.C. Waves Generated by the Horizontal Motions of a Bottom Disturbance. J. Mar. Sci. Eng. 2024, 12, 1990. https://doi.org/10.3390/jmse12111990
Chen Y, Hayatdavoodi M, Zhao B, Ertekin RC. Waves Generated by the Horizontal Motions of a Bottom Disturbance. Journal of Marine Science and Engineering. 2024; 12(11):1990. https://doi.org/10.3390/jmse12111990
Chicago/Turabian StyleChen, Yongbo, Masoud Hayatdavoodi, Binbin Zhao, and R. Cengiz Ertekin. 2024. "Waves Generated by the Horizontal Motions of a Bottom Disturbance" Journal of Marine Science and Engineering 12, no. 11: 1990. https://doi.org/10.3390/jmse12111990
APA StyleChen, Y., Hayatdavoodi, M., Zhao, B., & Ertekin, R. C. (2024). Waves Generated by the Horizontal Motions of a Bottom Disturbance. Journal of Marine Science and Engineering, 12(11), 1990. https://doi.org/10.3390/jmse12111990