Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments
Abstract
:1. Introduction
- i.
- It is morphology-independent, thus circumventing the issues of morphology ambiguity and developmental stages prevalent in zooplankton communities;
- ii.
- It requires minimal sampling and processing effort;
- iii.
- It requires minimal to no expertise in morphology-based identification;
- iv.
- It is highly sensitive, exhibiting greater efficiency in detecting rare and newly introduced species);
- v.
- Overall, it is more time- and cost-efficient. In fact, the costs associated with DNA-based tools are comparable to or slightly cheaper than those of the traditional identification methods [21].
2. Materials and Methods
3. General Overview
4. Zooplankton Sampling Strategies
5. Preservation of Zooplankton Samples
6. Zooplankton Sample Processing Prior to DNA Extraction
7. DNA Extraction
8. Molecular Marker and Primer Choice
9. Sequencing Platforms
10. Sequence Clustering Algorithms and Taxonomic Assignment
11. Final Considerations
12. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, H.J. Antarctic Marine Biodiversity—What Do We Know About the Distribution of Life in the Southern Ocean? PLoS ONE 2010, 5, e11683. [Google Scholar] [CrossRef] [PubMed]
- Miloslavich, P.; Díaz, J.M.; Klein, E.; Alvarado, J.J.; Díaz, C.; Gobin, J.; Escobar-Briones, E.; Cruz-Motta, J.J.; Weil, E.; Cortés, J.; et al. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE 2010, 5, e11916. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.L.S.; Barboza, E.G.; Nicolodi, J.L. Geografia dos Sistemas Costeiros e Oceanográficos: Subsídios para Gestão Integrada da Zona Costeira. GRAVEL 2003, 1, 81–89. [Google Scholar]
- Alongi, D.M. Coastal Ecosystem Processes; CRC Press: New York, NY, USA, 1998. [Google Scholar]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The Coasts of Our World: Ecological, Economic and Social Importance. Ecol. Econ. 2006, 63, 254–272. [Google Scholar] [CrossRef]
- Suchanek, T.H. Temperate Coastal Marine Communities: Biodiversity and Threats. Am. Zool. 1994, 34, 100–114. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, H. A Statistical Analysis of China’s Fisheries in the 12th Five-Year Period. Aquac. Fish. 2016, 1, 41–49. [Google Scholar] [CrossRef]
- Gannon, J.E.; Stemberger, R.S. Zooplankton (Especially Crustaceans and Rotifers) as Indicators of Water Quality. Trans. Am. Microsc. Soc. 1978, 97, 16. [Google Scholar] [CrossRef]
- Gajbhiye, S.N. Zooplankton—Study Methods, Importance and Significant Observations. Proc. Natl. Semin. Creeks Estuaries Mangroves-Pollut. Conserv. 2002, 21–27. Available online: https://drs.nio.res.in/drs/handle/2264/1358 (accessed on 29 October 2024).
- Kour, S.; Slathia, D.; Sharma, N.; Kour, S.; Verma, R. Zooplankton as Bioindicators of Trophic Status of a Lentic Water Source, Jammu (J&K) with Remarks on First Reports. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 393–404. [Google Scholar] [CrossRef]
- Harvey, C.T.; Qureshi, S.A.; MacIsaac, H.J. Detection of a Colonizing, Aquatic, Non-indigenous Species. Divers. Distrib. 2009, 15, 429–437. [Google Scholar] [CrossRef]
- Xiong, W.; Li, H.; Zhan, A. Early Detection of Invasive Species in Marine Ecosystems Using High-Throughput Sequencing: Technical Challenges and Possible Solutions. Mar. Biol. 2016, 163, 139. [Google Scholar] [CrossRef]
- Jerde, C.L.; Mahon, A.R.; Chadderton, W.L.; Lodge, D.M. “Sight-Unseen” Detection of Rare Aquatic Species Using Environmental DNA: eDNA Surveillance of Rare Aquatic Species. Conserv. Lett. 2011, 4, 150–157. [Google Scholar] [CrossRef]
- Zhan, A.; Hulák, M.; Sylvester, F.; Huang, X.; Adebayo, A.A.; Abbott, C.L.; Adamowicz, S.J.; Heath, D.D.; Cristescu, M.E.; MacIsaac, H.J. High Sensitivity of 454 Pyrosequencing for Detection of Rare Species in Aquatic Communities. Methods Ecol. Evol. 2013, 4, 558–565. [Google Scholar] [CrossRef]
- Hoffman, J.C.; Kelly, J.R.; Trebitz, A.S.; Peterson, G.S.; West, C.W. Effort and Potential Efficiencies for Aquatic Non-Native Species Early Detection. Can. J. Fish. Aquat. Sci. 2011, 68, 2064–2079. [Google Scholar] [CrossRef]
- Leray, M.; Knowlton, N. DNA Barcoding and Metabarcoding of Standardized Samples Reveal Patterns of Marine Benthic Diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 2076–2081. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological Identifications through DNA Barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Djurhuus, A.; Pitz, K.; Sawaya, N.A.; Rojas-Márquez, J.; Michaud, B.; Montes, E.; Muller-Karger, F.; Breitbart, M. Evaluation of Marine Zooplankton Community Structure through Environmental DNA Metabarcoding. Limnol. Oceanogr. Methods 2018, 16, 209–221. [Google Scholar] [CrossRef]
- Carroll, E.L.; Gallego, R.; Sewell, M.A.; Zeldis, J.; Ranjard, L.; Ross, H.A.; Tooman, L.K.; O’Rorke, R.; Newcomb, R.D.; Constantine, R. Multi-Locus DNA Metabarcoding of Zooplankton Communities and Scat Reveal Trophic Interactions of a Generalist Predator. Sci. Rep. 2019, 9, 281. [Google Scholar] [CrossRef]
- Lavrador, A.; Amaral, F.; Vieira, P.E.; Costa, F.; Duarte, S. Surveillance of Non-Indigenous Invertebrate Species through DNA Metabarcoding in Recreational Marinas in the North and Center of Portugal. ARPHA Conf. Abstr. 2021, 4, e64900. [Google Scholar] [CrossRef]
- Stein, E.D.; Martinez, M.C.; Stiles, S.; Miller, P.E.; Zakharov, E.V. Is DNA Barcoding Actually Cheaper and Faster than Traditional Morphological Methods: Results from a Survey of Freshwater Bioassessment Efforts in the United States? PLoS ONE 2014, 9, e95525. [Google Scholar] [CrossRef]
- Costa, F.O.; Carvalho, G.R. The Barcode of Life Initiative: Synopsis and Prospective Societal Impacts of DNA Barcoding of Fish. Genomics Soc. Policy 2007, 3, 29. [Google Scholar] [CrossRef]
- Geller, J.; Wheelock, M.; Guo, M. Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska. 2018. Available online: https://www.pwsrcac.org/document/metagenetic-analysis-of-2017-plankton-samples-from-prince-william-sound-alaska/ (accessed on 29 October 2024).
- Geller, J.; Wheelock, M.; Guo, M. Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince William Sound, Alaska. 2020. Available online: https://www.pwsrcac.org/document/metagenetic-analysis-of-2018-and-2019-plankton-samples-from-prince-william-sound-alaska/ (accessed on 29 October 2024).
- Pagenkopp Lohan, K.M.; DiMaria, R.; Geller, J. Variation in Zooplankton Community Composition in Prince William Sound across Space and Time. 2022. Available online: https://www.pwsrcac.org/document/variation-in-zooplankton-community-composition-in-prince-william-sound-across-space-and-time/ (accessed on 29 October 2024).
- Hakimzadeh, A.; Abdala Asbun, A.; Albanese, D.; Bernard, M.; Buchner, D.; Callahan, B.; Caporaso, J.G.; Curd, E.; Djemiel, C.; Brandström Durling, M.; et al. A Pile of Pipelines: An Overview of the Bioinformatics Software for Metabarcoding Data Analyses. Mol. Ecol. Resour. 2023, 24, e13847. [Google Scholar] [CrossRef]
- Chiba, S.; Batten, S.; Martin, C.S.; Ivory, S.; Miloslavich, P.; Weatherdon, L.V. Zooplankton Monitoring to Contribute towards Addressing Global Biodiversity Conservation Challenges. J. Plankton Res. 2018, 40, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Vieira, P.E.; Lavrador, A.S.; Costa, F.O. Status and Prospects of Marine NIS Detection and Monitoring through (e)DNA Metabarcoding. Sci. Total Environ. 2021, 751, 141729. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Simões, L.; Costa, F.O. Current Status and Topical Issues on the Use of eDNA-Based Targeted Detection of Rare Animal Species. Sci. Total Environ. 2023, 904, 166675. [Google Scholar] [CrossRef] [PubMed]
- Miya, M. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Annu. Rev. Mar. Sci. 2022, 14, 161–185. [Google Scholar] [CrossRef]
- Questel, J.M.; Hopcroft, R.R.; DeHart, H.M.; Smoot, C.A.; Kosobokova, K.N.; Bucklin, A. Metabarcoding of Zooplankton Diversity within the Chukchi Borderland, Arctic Ocean: Improved Resolution from Multi-Gene Markers and Region-Specific DNA Databases. Mar. Biodivers. 2021, 51, 4. [Google Scholar] [CrossRef]
- Ershova, E.A.; Wangensteen, O.S.; Falkenhaug, T. Mock Samples Resolve Biases in Diversity Estimates and Quantitative Interpretation of Zooplankton Metabarcoding Data. Mar. Biodivers. 2023, 53, 66. [Google Scholar] [CrossRef]
- Coguiec, E.; Ershova, E.A.; Daase, M.; Vonnahme, T.R.; Wangensteen, O.S.; Gradinger, R.; Præbel, K.; Berge, J. Seasonal Variability in the Zooplankton Community Structure in a Sub-Arctic Fjord as Revealed by Morphological and Molecular Approaches. Front. Mar. Sci. 2021, 8, 705042. [Google Scholar] [CrossRef]
- Lacoursière-Roussel, A.; Howland, K.; Normandeau, E.; Grey, E.K.; Archambault, P.; Deiner, K.; Lodge, D.M.; Hernandez, C.; Leduc, N.; Bernatchez, L. eDNA Metabarcoding as a New Surveillance Approach for Coastal Arctic Biodiversity. Ecol. Evol. 2018, 8, 7763–7777. [Google Scholar] [CrossRef]
- Lee, J.-H.; La, H.S.; Kim, J.-H.; Son, W.; Park, H.; Kim, Y.-M.; Kim, H.-W. Application of Dual Metabarcoding Platforms for the Meso- and Macrozooplankton Taxa in the Ross Sea. Genes 2022, 13, 922. [Google Scholar] [CrossRef] [PubMed]
- de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; et al. Eukaryotic Plankton Diversity in the Sunlit Ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [PubMed]
- Belle, C.C.; Stoeckle, B.C.; Geist, J. Taxonomic and Geographical Representation of Freshwater Environmental DNA Research in Aquatic Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1996–2009. [Google Scholar] [CrossRef]
- Duarte, S.; Leite, B.; Feio, M.; Costa, F.; Filipe, A. Integration of DNA-Based Approaches in Aquatic Ecological Assessment Using Benthic Macroinvertebrates. Water 2021, 13, 331. [Google Scholar] [CrossRef]
- Schenekar, T. The Current State of eDNA Research in Freshwater Ecosystems: Are We Shifting from the Developmental Phase to Standard Application in Biomonitoring? Hydrobiologia 2023, 850, 1263–1282. [Google Scholar] [CrossRef]
- Sameoto, D.; Wiebe, P.H.; Runge, J.; Postel, L.; Dunn, J.; Miller, C.; Coombs, S. Collecting Zooplankton. In ICES Zooplankton Methodology Manual; Academic Press: San Diego, CA, USA, 2000; pp. 55–81. ISBN 978-0-12-327645-2. [Google Scholar]
- Karjalainen, J.; Rahkola, M.; Viljanen, M.; Andronikova, I.N.; Avinskii, V.A. Comparison of Methods Used in Zooplankton Sampling and Counting in the Joint Russian-Finnish Evaluation of the Trophic State of Lake Ladoga. Hydrobiologia 1996, 322, 249–253. [Google Scholar] [CrossRef]
- Cheng, X.-W.; Zhang, L.-L.; Gao, F.; Tan, Y.-H.; Xiang, R.; Qiu, Z.-Y.; He, L.-J. Biodiversity of Zooplankton in 0–3000 m Waters from the Eastern Indian Ocean in Spring 2019 Based on Metabarcoding. Water Biol. Secur. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Brown, E.A.; Chain, F.J.J.; Zhan, A.; MacIsaac, H.J.; Cristescu, M.E. Early Detection of Aquatic Invaders Using Metabarcoding Reveals a High Number of Non-indigenous Species in C Anadian Ports. Divers. Distrib. 2016, 22, 1045–1059. [Google Scholar] [CrossRef]
- Abad, D.; Albaina, A.; Aguirre, M.; Estonba, A. 18S V9 Metabarcoding Correctly Depicts Plankton Estuarine Community Drivers. Mar. Ecol. Prog. Ser. 2017, 584, 31–43. [Google Scholar] [CrossRef]
- Abad, D.; Albaina, A.; Aguirre, M.; Laza-Martínez, A.; Uriarte, I.; Iriarte, A.; Villate, F.; Estonba, A. Is Metabarcoding Suitable for Estuarine Plankton Monitoring? A Comparative Study with Microscopy. Mar. Biol. 2016, 163, 149. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Wu, C.; Fu, X.; Guo, C.; Li, L.; Sun, J. Characteristics of Eukaryotic Plankton Communities in the Cold Water Masses and Nearshore Waters of the South Yellow Sea. Diversity 2021, 13, 21. [Google Scholar] [CrossRef]
- Qihang, L.; Yuanming, C.; Qianwen, S.; Zaiming, W.; Wei, X.; Yadong, Z.; Dong, S.; Xiaohui, X.; Dongsheng, Z. Metabarcoding Survey of Meroplankton Communities in the South China Sea and Philippine Sea: Shedding Light on Inter-Basin Biogeography in the West Pacific. Front. Mar. Sci. 2022, 9, 968666. [Google Scholar] [CrossRef]
- Kersten, O.; Vetter, E.W.; Jungbluth, M.J.; Smith, C.R.; Goetze, E. Larval Assemblages over the Abyssal Plain in the Pacific Are Highly Diverse and Spatially Patchy. PeerJ 2019, 7, e7691. [Google Scholar] [CrossRef] [PubMed]
- Pagenkopp Lohan, K.M.; Campbell, T.L.; Guo, J.; Wheelock, M.; DiMaria, R.A.; Geller, J.B. Intact vs. Homogenized Subsampling: Testing Impacts of Pre-Extraction Processing of Multi-Species Samples on Invasive Species Detection. Manag. Biol. Invasions 2019, 10, 324–341. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, D.; Shao, Q.; Fang, C.; Wang, C. Mesozooplankton Biodiversity, Vertical Assemblages, and Diel Migration in the Western Tropical Pacific Ocean Revealed by eDNA Metabarcoding and Morphological Methods. Front. Mar. Sci. 2022, 9, 1004410. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Georges, O.; Fernandez, S.; Ardura, A. eDNA Metabarcoding of Small Plankton Samples to Detect Fish Larvae and Their Preys from Atlantic and Pacific Waters. Sci. Rep. 2021, 11, 7224. [Google Scholar] [CrossRef]
- MacNeil, L.; Desai, D.K.; Costa, M.; LaRoche, J. Combining Multi-Marker Metabarcoding and Digital Holography to Describe Eukaryotic Plankton across the Newfoundland Shelf. Sci. Rep. 2022, 12, 13078. [Google Scholar] [CrossRef]
- Lin, Y.; Vidjak, O.; Ezgeta-Balić, D.; Bojanić Varezić, D.; Šegvić-Bubić, T.; Stagličić, N.; Zhan, A.; Briski, E. Plankton Diversity in Anthropocene: Shipping vs. Aquaculture along the Eastern Adriatic Coast Assessed through DNA Metabarcoding. Sci. Total Environ. 2022, 807, 151043. [Google Scholar] [CrossRef]
- Blanco-Bercial, L. Metabarcoding Analyses and Seasonality of the Zooplankton Community at BATS. Front. Mar. Sci. 2020, 7, 173. [Google Scholar] [CrossRef]
- Kim, H.; Lee, C.-R.; Lee, S.; Oh, S.-Y.; Kim, W. Biodiversity and Community Structure of Mesozooplankton in the Marine and Coastal National Park Areas of Korea. Diversity 2020, 12, 233. [Google Scholar] [CrossRef]
- Govender, A.; Groeneveld, J.; Singh, S.; Willows-Munro, S. Metabarcoding of Zooplankton Confirms Southwards Dispersal of Decapod Crustacean Species in the Western Indian Ocean. Afr. J. Mar. Sci. 2022, 44, 279–289. [Google Scholar] [CrossRef]
- Pappalardo, P.; Collins, A.G.; Pagenkopp Lohan, K.M.; Hanson, K.M.; Truskey, S.B.; Jaeckle, W.; Ames, C.L.; Goodheart, J.A.; Bush, S.L.; Biancani, L.M.; et al. The Role of Taxonomic Expertise in Interpretation of Metabarcoding Studies. ICES J. Mar. Sci. 2021, 78, 3397–3410. [Google Scholar] [CrossRef]
- Westfall, K.M.; Therriault, T.W.; Abbott, C.L. A New Approach to Molecular Biosurveillance of Invasive Species Using DNA Metabarcoding. Glob. Chang. Biol. 2020, 26, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J. The History of Plankton Sampling. In Zooplankton Sampling; Monographs on Oceanographic Methodology; Unesco: Paris, France, 1968; pp. 11–18. ISBN 978-92-3-101194-8. [Google Scholar]
- von Ammon, U.; Jeffs, A.; Zaiko, A.; van der Reis, A.; Goodwin, D.; Beckley, L.E.; Malpot, E.; Pochon, X. A Portable Cruising Speed Net: Expanding Global Collection of Sea Surface Plankton Data. Front. Mar. Sci. 2020, 7, 615458. [Google Scholar] [CrossRef]
- O’Rorke, R.; van der Reis, A.; von Ammon, U.; Beckley, L.E.; Pochon, X.; Zaiko, A.; Jeffs, A. eDNA Metabarcoding Shows Latitudinal Eukaryote Micro- and Mesoplankton Diversity Stabilizes across Oligotrophic Region of a >3000 Km Longitudinal Transect in the Indian Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 205, 105178. [Google Scholar] [CrossRef]
- Wiebe, P.H.; Benfield, M.C. From the Hensen Net toward Four-Dimensional Biological Oceanography. Prog. Oceanogr. 2003, 56, 7–136. [Google Scholar] [CrossRef]
- McGowan, J.A.; Brown, D.M. A New Opening-Closing Paired Zooplankton Net. Scrippts Inst. Oceanogr. Ref. 1966, 66, 1–56. [Google Scholar]
- Posgay, J.A.; Marak, R.R. The MARMAP Bongo Zooplankton Samplers. J. Northwest Atl. Fish. Sci. 1980, 1, 91–99. [Google Scholar] [CrossRef]
- Motoda, S.; Anraku, M.; Minoda, T. Experiments on the Performance of Plankton Samplings With Net. Bull. Fac. Fish. Hokkaido Univ. 1957, 8, 1–22. [Google Scholar]
- Hirai, J.; Tachibana, A.; Tsuda, A. Large-Scale Metabarcoding Analysis of Epipelagic and Mesopelagic Copepods in the Pacific. PLoS ONE 2020, 15, e0233189. [Google Scholar] [CrossRef]
- Hirai, J.; Yamazaki, K.; Hidaka, K.; Nagai, S.; Shimizu, Y.; Ichikawa, T. Characterization of Diversity and Community Structure of Small Planktonic Copepods in the Kuroshio Region off Japan Using a Metabarcoding Approach. Mar. Ecol. Prog. Ser. 2021, 657, 25–41. [Google Scholar] [CrossRef]
- Hirai, J.; Hidaka, K.; Nagai, S.; Shimizu, Y. DNA/RNA Metabarcoding and Morphological Analysis of Epipelagic Copepod Communities in the Izu Ridge off the Southern Coast of Japan. ICES J. Mar. Sci. 2021, 78, 3444–3456. [Google Scholar] [CrossRef]
- Hirai, J.; Yasuike, M.; Fujiwara, A.; Nakamura, Y.; Hamaoka, S.; Katakura, S.; Takano, Y.; Nagai, S. Effects of Plankton Net Characteristics on Metagenetic Community Analysis of Metazoan Zooplankton in a Coastal Marine Ecosystem. J. Exp. Mar. Biol. Ecol. 2015, 469, 36–43. [Google Scholar] [CrossRef]
- Skjoldal, H.R.; Wiebe, P.H.; Postel, L.; Knutsen, T.; Kaartvedt, S.; Sameoto, D.D. Intercomparison of Zooplankton (Net) Sampling Systems: Results from the ICES/GLOBEC Sea-Going Workshop. Prog. Oceanogr. 2013, 108, 1–42. [Google Scholar] [CrossRef]
- Terazaki, M.; Tomatsu, C. A Vertical Multiple Opening and Closing Plankton Sampler. J. Adv. Mar. Sci. Technol. Soc. 1997, 3, 127–132. [Google Scholar]
- John, E.H.; Batten, S.D.; Harris, R.P.; Hays, G.C. Comparison between Zooplankton Data Collected by the Continuous Plankton Recorder Survey in the English Channel and by WP-2 Nets at Station L4, Plymouth (UK). J. Sea Res. 2001, 46, 223–232. [Google Scholar] [CrossRef]
- Clark, R.A.; Frid, C.L.J.; Batten, S. A Critical Comparison of Two Long-Term Zooplankton Time Series from the Central-West North Sea. J. Plankton Res. 2001, 23, 27–39. [Google Scholar] [CrossRef]
- Cook, K.B.; Hays, G.C. Comparison of the Epipelagic Zooplankton Samples from a U-Tow and the Traditional WP2 Net. J. Plankton Res. 2001, 23, 953–962. [Google Scholar] [CrossRef]
- Richardson, A.J.; John, E.H.; Irigoien, X.; Harris, R.P.; Hays, G.C. How Well Does the Continuous Plankton Recorder (CPR) Sample Zooplankton? A Comparison with the Longhurst Hardy Plankton Recorder (LHPR) in the Northeast Atlantic. Deep Sea Res. Part Oceanogr. Res. Pap. 2004, 51, 1283–1294. [Google Scholar] [CrossRef]
- Casas, L.; Pearman, J.K.; Irigoien, X. Metabarcoding Reveals Seasonal and Temperature-Dependent Succession of Zooplankton Communities in the Red Sea. Front. Mar. Sci. 2017, 4, 241. [Google Scholar] [CrossRef]
- Parry, H.E.; Atkinson, A.; Somerfield, P.J.; Lindeque, P.K. A Metabarcoding Comparison of Taxonomic Richness and Composition between the Water Column and the Benthic Boundary Layer. ICES J. Mar. Sci. 2021, 78, 3333–3341. [Google Scholar] [CrossRef]
- Govender, A.; Singh, S.; Groeneveld, J.; Pillay, S.; Willows-Munro, S. Experimental Validation of Taxon-specific Mini-barcode Primers for Metabarcoding of Zooplankton. Ecol. Appl. 2022, 32, e02469. [Google Scholar] [CrossRef] [PubMed]
- Descôteaux, R.; Huserbråten, M.; Jørgensen, L.; Renaud, P.; Ingvaldsen, R.; Ershova, E.; Bluhm, B. Origin of Marine Invertebrate Larvae on an Arctic Inflow Shelf. Mar. Ecol. Prog. Ser. 2022, 699, 1–17. [Google Scholar] [CrossRef]
- Pearman, J.K.; Irigoien, X. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea. PLoS ONE 2015, 10, e0133487. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.; Broms, C.; Bagøien, E.; Knutsen, T.; Arnesen, H.; Mozfar, B. Comparison of Two Multiple Plankton Samplers: MOCNESS and Multinet Mammoth. Limnol. Oceanogr. Methods 2022, 20, 595–604. [Google Scholar] [CrossRef]
- Keen, E. A Practical Designer’s Guide to Mesozooplankton Nets. 2013. Available online: https://acsweb.ucsd.edu/~ekeen/resources/Choosing-a-Net.pdf (accessed on 23 May 2024).
- Govindarajan, A.F.; McCartin, L.; Adams, A.; Allan, E.; Belani, A.; Francolini, R.; Fujii, J.; Gomez-Ibañez, D.; Kukulya, A.; Marin, F.; et al. Improved Biodiversity Detection Using a Large-Volume Environmental DNA Sampler with in Situ Filtration and Implications for Marine eDNA Sampling Strategies. Deep Sea Res. Part Oceanogr. Res. Pap. 2022, 189, 103871. [Google Scholar] [CrossRef]
- Riccardi, N. Selectivity of Plankton Nets over Mesozooplankton Taxa: Implications for Abundance, Biomass and Diversity Estimation. J. Limnol. 2010, 69, 287. [Google Scholar] [CrossRef]
- Mack, H.R.; Conroy, J.D.; Blocksom, K.A.; Stein, R.A.; Ludsin, S.A. A Comparative Analysis of Zooplankton Field Collection and Sample Enumeration Methods. Limnol. Oceanogr. Methods 2012, 10, 41–53. [Google Scholar] [CrossRef]
- Williams, C.; Pontén, F.; Moberg, C.; Söderkvist, P.; Uhlén, M.; Pontén, J.; Sitbon, G.; Lundeberg, J. A High Frequency of Sequence Alterations Is Due to Formalin Fixation of Archival Specimens. Am. J. Pathol. 1999, 155, 1467–1471. [Google Scholar] [CrossRef]
- van der Loos, L.M.; Nijland, R. Biases in Bulk: DNA Metabarcoding of Marine Communities and the Methodology Involved. Mol. Ecol. 2021, 30, 3270–3288. [Google Scholar] [CrossRef]
- Shiozaki, T.; Itoh, F.; Hirose, Y.; Onodera, J.; Kuwata, A.; Harada, N. A DNA Metabarcoding Approach for Recovering Plankton Communities from Archived Samples Fixed in Formalin. PLoS ONE 2021, 16, e0245936. [Google Scholar] [CrossRef] [PubMed]
- Marquina, D.; Buczek, M.; Ronquist, F.; Łukasik, P. The Effect of Ethanol Concentration on the Morphological and Molecular Preservation of Insects for Biodiversity Studies. PeerJ 2021, 9, e10799. [Google Scholar] [CrossRef]
- Matthews, S.A.; Goetze, E.; Ohman, M.D. Recommendations for Interpreting Zooplankton Metabarcoding and Integrating Molecular Methods with Morphological Analyses. ICES J. Mar. Sci. 2021, 78, 3387–3396. [Google Scholar] [CrossRef]
- Rey, A.; Corell, J.; Rodriguez-Ezpeleta, N. Metabarcoding to Study Zooplankton Diversity. In Zooplankton Ecology; Teodósio, M.A., Barbosa, A.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 252–263. ISBN 978-1-351-02182-1. [Google Scholar]
- Stein, E.D.; White, B.P.; Mazor, R.D.; Miller, P.E.; Pilgrim, E.M. Evaluating Ethanol-Based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates. PLoS ONE 2013, 8, e51273. [Google Scholar] [CrossRef] [PubMed]
- Zaiko, A.; Martinez, J.L.; Ardura, A.; Clusa, L.; Borrell, Y.J.; Samuiloviene, A.; Roca, A.; Garcia-Vazquez, E. Detecting Nuisance Species Using NGST: Methodology Shortcomings and Possible Application in Ballast Water Monitoring. Mar. Environ. Res. 2015, 112, 64–72. [Google Scholar] [CrossRef]
- Ardura, A.; Rick, J.; Martinez, J.L.; Zaiko, A.; Garcia-Vazquez, E. Stress Resistance for Unraveling Potential Biopollutants. Insights from Ballast Water Community Analysis through DNA. Mar. Pollut. Bull. 2021, 163, 111935. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Wang, X.; Jin, Y.; Nagai, S.; Lin, S. Phytoplankton and Microzooplankton Community Structure and Assembly Mechanisms in Northwestern Pacific Ocean Estuaries with Environmental Heterogeneity and Geographic Segregation. Microbiol. Spectr. 2023, 11, e04926-22. [Google Scholar] [CrossRef]
- Trottet, A.; Wilson, B.; Sew Wei Xin, G.; George, C.; Casten, L.; Schmoker, C.; Rawi, N.S.B.M.; Chew Siew, M.; Larsen, O.; Eikaas, H.S.; et al. Resting Stage of Plankton Diversity from Singapore Coastal Water: Implications for Harmful Algae Blooms and Coastal Management. Environ. Manag. 2018, 61, 275–290. [Google Scholar] [CrossRef]
- Jo, H.; Kim, D.-K.; Park, K.; Kwak, I.-S. Discrimination of Spatial Distribution of Aquatic Organisms in a Coastal Ecosystem Using eDNA. Appl. Sci. 2019, 9, 3450. [Google Scholar] [CrossRef]
- de Vargas, C.; Le Bescot, N.; Pollina, T.; Henry, N.; Romac, S.; Colin, S.; Haëntjens, N.; Carmichael, M.; Berger, C.; Le Guen, D.; et al. Plankton Planet: A Frugal, Cooperative Measure of Aquatic Life at the Planetary Scale. Front. Mar. Sci. 2022, 9, 936972. [Google Scholar] [CrossRef]
- Ransome, E.; Geller, J.B.; Timmers, M.; Leray, M.; Mahardini, A.; Sembiring, A.; Collins, A.G.; Meyer, C.P. The Importance of Standardization for Biodiversity Comparisons: A Case Study Using Autonomous Reef Monitoring Structures (ARMS) and Metabarcoding to Measure Cryptic Diversity on Mo’orea Coral Reefs, French Polynesia. PLoS ONE 2017, 12, e0175066. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.C.; Comtet, T.; Pouline, P.; Cailliau, C.; Blanchet-Aurigny, A.; Sourisseau, M.; Siano, R.; Memery, L.; Viard, F.; Nunes, F. Oceanographic Structure and Seasonal Variation Contribute to High Heterogeneity in Mesozooplankton over Small Spatial Scales. ICES J. Mar. Sci. 2021, 78, 3288–3302. [Google Scholar] [CrossRef]
- Longmire, J.L.; Maltbie, M.; Baker, R.J. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections; Occasional papers; Museum of Texas Tech University: Lubbock, TX, USA, 1997. [Google Scholar]
- Renshaw, M.A.; Olds, B.P.; Jerde, C.L.; McVeigh, M.M.; Lodge, D.M. The Room Temperature Preservation of Filtered Environmental DNA Samples and Assimilation into a Phenol–Chloroform–Isoamyl Alcohol DNA Extraction. Mol. Ecol. Resour. 2015, 15, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Wegleitner, B.J.; Jerde, C.L.; Tucker, A.; Chadderton, W.L.; Mahon, A.R. Long Duration, Room Temperature Preservation of Filtered eDNA Samples. Conserv. Genet. Resour. 2015, 7, 789–791. [Google Scholar] [CrossRef]
- Schenekar, T.; Baxter, J.; Phukuntsi, M.A.; Sedlmayr, I.; Weckworth, B.; Mwale, M. Optimizing Waterborne eDNA Capture from Waterholes in Savanna Systems under Remote Field Conditions. Mol. Ecol. Resour. 2024, 24, e13942. [Google Scholar] [CrossRef]
- Yoder, M.; De Ley, I.T.; Wm King, I.; Mundo-Ocampo, M.; Mann, J.; Blaxter, M.; Poiras, L.; De Ley, P. DESS: A Versatile Solution for Preserving Morphology and Extractable DNA of Nematodes. Nematology 2006, 8, 367–376. [Google Scholar] [CrossRef]
- Pearman, J.K.; von Ammon, U.; Laroche, O.; Zaiko, A.; Wood, S.A.; Zubia, M.; Planes, S.; Pochon, X. Metabarcoding as a Tool to Enhance Marine Surveillance of Nonindigenous Species in Tropical Harbors: A Case Study in Tahiti. Environ. DNA 2021, 3, 173–189. [Google Scholar] [CrossRef]
- Machida, R.J.; Kurihara, H.; Nakajima, R.; Sakamaki, T.; Lin, Y.-Y.; Furusawa, K. Comparative Analysis of Zooplankton Diversities and Compositions Estimated from Complement DNA and Genomic DNA Amplicons, Metatranscriptomics, and Morphological Identifications. ICES J. Mar. Sci. 2021, 78, 3428–3443. [Google Scholar] [CrossRef]
- Kim, D.-K.; Park, K.; Jo, H.; Kwak, I.-S. Comparison of Water Sampling between Environmental DNA Metabarcoding and Conventional Microscopic Identification: A Case Study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef]
- Berry, T.E.; Saunders, B.J.; Coghlan, M.L.; Stat, M.; Jarman, S.; Richardson, A.J.; Davies, C.H.; Berry, O.; Harvey, E.S.; Bunce, M. Marine Environmental DNA Biomonitoring Reveals Seasonal Patterns in Biodiversity and Identifies Ecosystem Responses to Anomalous Climatic Events. PLoS Genet. 2019, 15, e1007943. [Google Scholar] [CrossRef]
- Macher, J.N.; van der Hoorn, B.B.; Peijnenburg, K.T.C.A.; van Walraven, L.; Renema, W. Metabarcoding Reveals Different Zooplankton Communities in Northern and Southern Areas of the North Sea. bioRxiv 2020. [Google Scholar] [CrossRef]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many Species in One: DNA Barcoding Overestimates the Number of Species When Nuclear Mitochondrial Pseudogenes Are Coamplified. Proc. Natl. Acad. Sci. USA 2008, 105, 13486–13491. [Google Scholar] [CrossRef] [PubMed]
- Deiner, K.; Lopez, J.; Bourne, S.; Holman, L.; Seymour, M.; Grey, E.K.; Lacoursière, A.; Li, Y.; Renshaw, M.A.; Pfrender, M.E.; et al. Optimising the Detection of Marine Taxonomic Richness Using Environmental DNA Metabarcoding: The Effects of Filter Material, Pore Size and Extraction Method. Metabarcoding Metagenomics 2018, 2, e28963. [Google Scholar] [CrossRef]
- Jeunen, G.; Knapp, M.; Spencer, H.G.; Taylor, H.R.; Lamare, M.D.; Stat, M.; Bunce, M.; Gemmell, N.J. Species-level Biodiversity Assessment Using Marine Environmental DNA Metabarcoding Requires Protocol Optimization and Standardization. Ecol. Evol. 2019, 9, 1323–1335. [Google Scholar] [CrossRef]
- Corell, J.; Rodríguez-Ezpeleta, N. Tuning of Protocols and Marker Selection to Evaluate the Diversity of Zooplankton Using Metabarcoding. Rev. Investig. Mar. 2014, 21, 19–39. [Google Scholar]
- Cicala, F.; Arteaga, M.C.; Herzka, S.Z.; Hereu, C.M.; Jimenez-Rosenberg, S.P.A.; Saavedra-Flores, A.; Robles-Flores, J.; Gomez, R.; Batta-Lona, P.G.; Galindo-Sánchez, C.E. Environmental Conditions Drive Zooplankton Community Structure in the Epipelagic Oceanic Water of the Southern Gulf of Mexico: A Molecular Approach. Mol. Ecol. 2022, 31, 546–561. [Google Scholar] [CrossRef]
- Gasca-Pineda, J.; Galindo-Sánchez, C.E.; Martinez-Mercado, M.A.; Jiménez-Rosenberg, S.P.A.; Hereu, C.M.; Nakamura, Y.; Herzka, S.Z.; Compaire, J.C.; Gomez-Reyes, R.; Robles-Flores, J.; et al. Community Structure and Diversity of Five Groups of Zooplankton in the Perdido Region of the Gulf of Mexico Using DNA Metabarcoding. Aquat. Ecol. 2023, 57, 149–164. [Google Scholar] [CrossRef]
- Martinez, M.A.; Hereu, C.M.; Arteaga, M.C.; Jiménez-Rosenberg, S.P.A.; Herzka, S.Z.; Saavedra-Flores, A.; Robles-Flores, J.; Gomez-Reyes, R.; Batta-Lona, P.G.; Gasca-Pineda, J.; et al. Epipelagic Zooplankton Diversity in the Deep Water Region of the Gulf of Mexico: A Metabarcoding Survey. ICES J. Mar. Sci. 2021, 78, 3317–3332. [Google Scholar] [CrossRef]
- Aljanabi, S.M.; Martinez, I. Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR- Based Techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef]
- Bucklin, A. Methods for Population Genetic Analysis of Zooplankton. In ICES Zooplankton Methodology Manual; Academic: San Diego, CA, USA, 2000; ISBN 978-0-12-327645-2. [Google Scholar]
- Pearman, J.K.; El-Sherbiny, M.M.; Lanzén, A.; Al-Aidaroos, A.M.; Irigoien, X. Zooplankton Diversity across Three Red Sea Reefs Using Pyrosequencing. Front. Mar. Sci. 2014, 1, 27. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Parry, H.E.; Harmer, R.A.; Somerfield, P.J.; Atkinson, A. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages. PLoS ONE 2013, 8, e81327. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Clarke, L.J.; Baker, S.C.; Jordan, G.J.; Burridge, C.P. A Practical Guide to DNA Metabarcoding for Entomological Ecologists. Ecol. Entomol. 2020, 45, 373–385. [Google Scholar] [CrossRef]
- Deiner, K.; Walser, J.-C.; Mächler, E.; Altermatt, F. Choice of Capture and Extraction Methods Affect Detection of Freshwater Biodiversity from Environmental DNA. Biol. Conserv. 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Liu, M.; Xue, Y.; Yang, J. Rare Plankton Subcommunities Are Far More Affected by DNA Extraction Kits Than Abundant Plankton. Front. Microbiol. 2019, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Carrigg, C.; Rice, O.; Kavanagh, S.; Collins, G.; O’Flaherty, V. DNA Extraction Method Affects Microbial Community Profiles from Soils and Sediment. Appl. Microbiol. Biotechnol. 2007, 77, 955–964. [Google Scholar] [CrossRef]
- Stoeckle, M. Taxonomy, DNA, and the Bar Code of Life. BioScience 2003, 53, 796. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards Next-generation Biodiversity Assessment Using DNA Metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Ratnasingham, S.; De Waard, J.R. Barcoding Animal Life: Cytochrome c Oxidase Subunit 1 Divergences among Closely Related Species. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, S96–S99. [Google Scholar] [CrossRef]
- Doyle, J.J.; Gaut, B.S. Evolution of Genes and Taxa: A Primer. In Plant Molecular Evolution; Doyle, J.J., Gaut, B.S., Eds.; Springer: Dordrecht, Netherlands, 2000; pp. 1–23. ISBN 978-94-010-5833-9. [Google Scholar]
- Zheng, L.; He, J.; Lin, Y.; Cao, W.; Zhang, W. 16S rRNA Is a Better Choice than COI for DNA Barcoding Hydrozoans in the Coastal Waters of China. Acta Oceanol. Sin. 2014, 33, 55–76. [Google Scholar] [CrossRef]
- Kim, A.R.; Yoon, T.-H.; Lee, C.I.; Kang, C.-K.; Kim, H.-W. Metabarcoding Analysis of Ichthyoplankton in the East/Japan Sea Using the Novel Fish-Specific Universal Primer Set. Front. Mar. Sci. 2021, 8, 614394. [Google Scholar] [CrossRef]
- Saccone, C.; De Giorgi, C.; Gissi, C.; Pesole, G.; Reyes, A. Evolutionary Genomics in Metazoa: The Mitochondrial DNA as a Model System. Gene 1999, 238, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.L. Evolutionary Rates, Divergence Dates, and the Performance of Mitochondrial Genes in Bayesian Phylogenetic Analysis. Syst. Biol. 2006, 55, 289–300. [Google Scholar] [CrossRef]
- Salas, A.; Bandelt, H.-J.; Macaulay, V.; Richards, M.B. Phylogeographic Investigations: The Role of Trees in Forensic Genetics. Forensic Sci. Int. 2007, 168, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Andújar, C.; Arribas, P.; Yu, D.W.; Vogler, A.P.; Emerson, B.C. Why the COI Barcode Should Be the Community DNA Metabarcode for the Metazoa. Mol. Ecol. 2018, 27, 3968–3975. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.O.; Henzler, C.M.; Lunt, D.H.; Whiteley, N.M.; Rock, J. Probing Marine Gammarus (Amphipoda) Taxonomy with DNA Barcodes. Syst. Biodivers. 2009, 7, 365–379. [Google Scholar] [CrossRef]
- Baek, S.Y.; Jang, K.H.; Choi, E.H.; Ryu, S.H.; Kim, S.K.; Lee, J.H.; Lim, Y.J.; Lee, J.; Jun, J.; Kwak, M.; et al. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea. PLoS ONE 2016, 11, e0157307. [Google Scholar] [CrossRef]
- Hoeh, W.R.; Blakley, K.H.; Brown, W.M. Heteroplasmy Suggests Limited Biparental Inheritance of Mytilus Mitochondrial DNA. Science 1991, 251, 1488–1490. [Google Scholar] [CrossRef]
- McFadden, C.S.; Benayahu, Y.; Pante, E.; Thoma, J.N.; Nevarez, P.A.; France, S.C. Limitations of Mitochondrial Gene Barcoding in Octocorallia. Mol. Ecol. Resour. 2011, 11, 19–31. [Google Scholar] [CrossRef]
- Śmietanka, B.; Burzyński, A.; Hummel, H.; Wenne, R. Glacial History of the European Marine Mussels Mytilus, Inferred from Distribution of Mitochondrial DNA Lineages. Heredity 2014, 113, 250–258. [Google Scholar] [CrossRef]
- Bucklin, A.; Lindeque, P.K.; Rodriguez-Ezpeleta, N.; Albaina, A.; Lehtiniemi, M. Metabarcoding of Marine Zooplankton: Prospects, Progress and Pitfalls. J. Plankton Res. 2016, 38, 393–400. [Google Scholar] [CrossRef]
- Albaina, A.; Garić, R.; Yebra, L. Know Your Limits; miniCOI Metabarcoding Fails with Key Marine Zooplankton Taxa. J. Plankton Res. 2024, fbae057. [Google Scholar] [CrossRef]
- Clarke, L.J.; Beard, J.M.; Swadling, K.M.; Deagle, B.E. Effect of Marker Choice and Thermal Cycling Protocol on Zooplankton DNA Metabarcoding Studies. Ecol. Evol. 2017, 7, 873–883. [Google Scholar] [CrossRef]
- Xu, G.; Jianghua, Y.; Xiaowei, Z. Study on the Selection of Marker Genes in Zooplankton DNA Metabarcoding Monitoring. Asian J. Ecotoxicol. 2020, 15, 61–70. [Google Scholar]
- Meredith, C.; Hoffman, J.; Trebitz, A.; Pilgrim, E.; Okum, S.; Martinson, J.; Cameron, E.S. Evaluating the Performance of DNA Metabarcoding for Assessment of Zooplankton Communities in Western Lake Superior Using Multiple Markers. Metabarcoding Metagenomics 2021, 5, e64735. [Google Scholar] [CrossRef]
- Tang, C.Q.; Leasi, F.; Obertegger, U.; Kieneke, A.; Barraclough, T.G.; Fontaneto, D. The Widely Used Small Subunit 18S rDNA Molecule Greatly Underestimates True Diversity in Biodiversity Surveys of the Meiofauna. Proc. Natl. Acad. Sci. USA 2012, 109, 16208–16212. [Google Scholar] [CrossRef] [PubMed]
- Berry, T.E.; Coghlan, M.L.; Saunders, B.J.; Richardson, A.J.; Power, M.; Harvey, E.; Jarman, S.; Berry, O.; Davies, C.H.; Bunce, M. A 3-year Plankton DNA Metabarcoding Survey Reveals Marine Biodiversity Patterns in Australian Coastal Waters. Divers. Distrib. 2023, 29, 862–878. [Google Scholar] [CrossRef]
- Kim, E.-B.; Lee, S.R.; Lee, C.I.; Park, H.; Kim, H.-W. Development of the Cephalopod-Specific Universal Primer Set and Its Application for the Metabarcoding Analysis of Planktonic Cephalopods in Korean Waters. PeerJ 2019, 7, e7140. [Google Scholar] [CrossRef]
- Harvey, J.B.J.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of Morphological and next Generation DNA Sequencing Methods for Assessing Zooplankton Assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Harvey, J.; Fisher, J.; Ryan, J.; Johnson, S.; Peterson, W.; Vrijenhoek, R. Changes in Zooplankton Assemblages in Northern Monterey Bay, California, during a Fall Transition. Mar. Ecol. Prog. Ser. 2018, 604, 99–120. [Google Scholar] [CrossRef]
- Hirai, J. Molecular-Based Approach for Revealing Community Structure and Diversity of Marine Zooplankton. Oceanogr. Jpn. 2021, 30, 1–13. [Google Scholar] [CrossRef]
- Hirai, J.; Kuriyama, M.; Ichikawa, T.; Hidaka, K.; Tsuda, A. A Metagenetic Approach for Revealing Community Structure of Marine Planktonic Copepods. Mol. Ecol. Resour. 2015, 15, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Hirai, J.; Tsuda, A. Metagenetic Community Analysis of Epipelagic Planktonic Copepods in the Tropical and Subtropical Pacific. Mar. Ecol. Prog. Ser. 2015, 534, 65–78. [Google Scholar] [CrossRef]
- Hirai, J.; Nagai, S.; Hidaka, K. Evaluation of Metagenetic Community Analysis of Planktonic Copepods Using Illumina MiSeq: Comparisons with Morphological Classification and Metagenetic Analysis Using Roche 454. PLoS ONE 2017, 12, e0181452. [Google Scholar] [CrossRef] [PubMed]
- Semmouri, I.; De Schamphelaere, K.A.C.; Willemse, S.; Vandegehuchte, M.B.; Janssen, C.R.; Asselman, J. Metabarcoding Reveals Hidden Species and Improves Identification of Marine Zooplankton Communities in the North Sea. ICES J. Mar. Sci. 2021, 78, 3411–3427. [Google Scholar] [CrossRef]
- Langer, J.A.F.; Sharma, R.; Schmidt, S.I.; Bahrdt, S.; Horn, H.G.; Algueró-Muñiz, M.; Nam, B.; Achterberg, E.P.; Riebesell, U.; Boersma, M.; et al. Community Barcoding Reveals Little Effect of Ocean Acidification on the Composition of Coastal Plankton Communities: Evidence from a Long-Term Mesocosm Study in the Gullmar Fjord, Skagerrak. PLoS ONE 2017, 12, e0175808. [Google Scholar] [CrossRef]
- Ki, J.-S. Hypervariable Regions (V1–V9) of the Dinoflagellate 18S rRNA Using a Large Dataset for Marker Considerations. J. Appl. Phycol. 2012, 24, 1035–1043. [Google Scholar] [CrossRef]
- Blaxter, M.L.; De Ley, P.; Garey, J.R.; Liu, L.X.; Scheldeman, P.; Vierstraete, A.; Vanfleteren, J.R.; Mackey, L.Y.; Dorris, M.; Frisse, L.M.; et al. A Molecular Evolutionary Framework for the Phylum Nematoda. Nature 1998, 392, 71–75. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten Years of Next-Generation Sequencing Technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Geller, J.; Meyer, C.; Parker, M.; Hawk, H. Redesign of PCR Primers for Mitochondrial Cytochrome c Oxidase Subunit I for Marine Invertebrates and Application in All-taxa Biotic Surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A New Versatile Primer Set Targeting a Short Fragment of the Mitochondrial COI Region for Metabarcoding Metazoan Diversity: Application for Characterizing Coral Reef Fish Gut Contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Schroeder, A.; Pallavicini, A.; Edomi, P.; Pansera, M.; Camatti, E. Suitability of a Dual COI Marker for Marine Zooplankton DNA Metabarcoding. Mar. Environ. Res. 2021, 170, 105444. [Google Scholar] [CrossRef] [PubMed]
- Capra, E.; Giannico, R.; Montagna, M.; Turri, F.; Cremonesi, P.; Strozzi, F.; Leone, P.; Gandini, G.; Pizzi, F. A New Primer Set for DNA Metabarcoding of Soil Metazoa. Eur. J. Soil. Biol. 2016, 77, 53–59. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Porter, T.M.; Wright, M.; Rudar, J. COI Metabarcoding Primer Choice Affects Richness and Recovery of Indicator Taxa in Freshwater Systems. PLoS ONE 2019, 14, e0220953. [Google Scholar] [CrossRef]
- Govender, A.; Singh, S.; Groeneveld, J.; Pillay, S.; Willows-Munro, S. Metabarcoding Analysis of Marine Zooplankton Confirms the Ecological Role of a Sheltered Bight along an Exposed Continental Shelf. Mol. Ecol. 2023, 32, 6210–6222. [Google Scholar] [CrossRef]
- Santoferrara, L.F. Current Practice in Plankton Metabarcoding: Optimization and Error Management. J. Plankton Res. 2019, 41, 571–582. [Google Scholar] [CrossRef]
- Vincent, A.T.; Derome, N.; Boyle, B.; Culley, A.I.; Charette, S.J. Next-Generation Sequencing (NGS) in the Microbiological World: How to Make the Most of Your Money. J. Microbiol. Methods 2017, 138, 60–71. [Google Scholar] [CrossRef]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-Throughput Sequencing Technologies. Mol. Cell 2015, 58, 586–597. [Google Scholar] [CrossRef]
- Salipante, S.J.; Kawashima, T.; Rosenthal, C.; Hoogestraat, D.R.; Cummings, L.A.; Sengupta, D.J.; Harkins, T.T.; Cookson, B.T.; Hoffman, N.G. Performance Comparison of Illumina and Ion Torrent Next-Generation Sequencing Platforms for 16S rRNA-Based Bacterial Community Profiling. Appl. Environ. Microbiol. 2014, 80, 7583–7591. [Google Scholar] [CrossRef]
- Allali, I.; Arnold, J.W.; Roach, J.; Cadenas, M.B.; Butz, N.; Hassan, H.M.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; et al. A Comparison of Sequencing Platforms and Bioinformatics Pipelines for Compositional Analysis of the Gut Microbiome. BMC Microbiol. 2017, 17, 194. [Google Scholar] [CrossRef]
- Braukmann, T.W.A.; Ivanova, N.V.; Prosser, S.W.J.; Elbrecht, V.; Steinke, D.; Ratnasingham, S.; De Waard, J.R.; Sones, J.E.; Zakharov, E.V.; Hebert, P.D.N. Metabarcoding a Diverse Arthropod Mock Community. Mol. Ecol. Resour. 2019, 19, 711–727. [Google Scholar] [CrossRef]
- Singer, G.A.C.; Fahner, N.A.; Barnes, J.G.; McCarthy, A.; Hajibabaei, M. Comprehensive Biodiversity Analysis via Ultra-Deep Patterned Flow Cell Technology: A Case Study of eDNA Metabarcoding Seawater. Sci. Rep. 2019, 9, 5991. [Google Scholar] [CrossRef]
- Kchouk, M.; Gibrat, J.F.; Elloumi, M. Generations of Sequencing Technologies: From First to Next Generation. Biol. Med. 2017, 9. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Plesivkova, D.; Richards, R.; Harbison, S. A Review of the Potential of the MinIONTM Single-molecule Sequencing System for Forensic Applications. WIREs Forensic Sci. 2019, 1, e1323. [Google Scholar] [CrossRef]
- Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef] [PubMed]
- Egeter, B.; Veríssimo, J.; Lopes-Lima, M.; Chaves, C.; Pinto, J.; Riccardi, N.; Beja, P.; Fonseca, N.A. Speeding up the Detection of Invasive Aquatic Species Using Environmental DNA and Nanopore Sequencing. bioRxiv 2020. [Google Scholar] [CrossRef]
- Carradec, Q.; Poulain, J.; Boissin, E.; Hume, B.C.C.; Voolstra, C.R.; Ziegler, M.; Engelen, S.; Cruaud, C.; Planes, S.; Wincker, P. A Framework for in Situ Molecular Characterization of Coral Holobionts Using Nanopore Sequencing. Sci. Rep. 2020, 10, 15893. [Google Scholar] [CrossRef]
- Baloğlu, B.; Chen, Z.; Elbrecht, V.; Braukmann, T.; MacDonald, S.; Steinke, D. A Workflow for Accurate Metabarcoding Using Nanopore MinION Sequencing. Methods Ecol. Evol. 2021, 12, 794–804. [Google Scholar] [CrossRef]
- Chang, J.J.M.; Ip, Y.C.A.; Neo, W.L.; Mowe, M.A.D.; Jaafar, Z.; Huang, D. Primed and Ready: Nanopore Metabarcoding Can Now Recover Highly Accurate Consensus Barcodes That Are Generally Indel-Free. BMC Genom. 2024, 25, 842. [Google Scholar] [CrossRef] [PubMed]
- Srivathsan, A.; Loh, R.K.; Ong, E.J.; Lee, L.; Ang, Y.; Kutty, S.N.; Meier, R. Network Analysis with Either Illumina or MinION Reveals That Detecting Vertebrate Species Requires Metabarcoding of iDNA from a Diverse Fly Community. Mol. Ecol. 2023, 32, 6418–6435. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between Closely Related Microbial Taxa Using 16S rRNA Gene Data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M.; Brown, E.A.; Chain, F.J.J.; MacIsaac, H.J.; Cristescu, M.E. Toward Accurate Molecular Identification of Species in Complex Environmental Samples: Testing the Performance of Sequence Filtering and Clustering Methods. Ecol. Evol. 2015, 5, 2252–2266. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Chain, F.J.J.; Crease, T.J.; MacIsaac, H.J.; Cristescu, M.E. Divergence Thresholds and Divergent Biodiversity Estimates: Can Metabarcoding Reliably Describe Zooplankton Communities? Ecol. Evol. 2015, 5, 2234–2251. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Hleap, J.S.; Littlefair, J.E.; Steinke, D.; Hebert, P.D.N.; Cristescu, M.E. Assessment of Current Taxonomic Assignment Strategies for Metabarcoding Eukaryotes. Mol. Ecol. Resour. 2021, 21, 2190–2203. [Google Scholar] [CrossRef]
- Guy-Haim, T.; Velasquez, X.; Terbiyik-Kurt, T.; Di Capua, I.; Mazzocchi, M.; Morov, A. A New Record of the Rapidly Spreading Calanoid Copepod Pseudodiaptomus Marinus (Sato, 1913) in the Levantine Sea Using Multi-Marker Metabarcoding. BioInvasions Rec. 2022, 11, 964–976. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glockner, F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Wei, C.; Chan, D.; Agda, J.; Agda, J.; Ballesteros-Mejia, L.; Boutou, H.A.; El Bastami, Z.M.; Ma, E.; Manjunath, R.; et al. BOLD v4: A Centralized Bioinformatics Platform for DNA-Based Biodiversity Data. In DNA Barcoding: Methods and Protocols; DeSalle, R., Ed.; Springer: New York, NY, USA, 2024; pp. 403–441. ISBN 978-1-07-163581-0. [Google Scholar]
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; De Vargas, C.; Decelle, J.; et al. The Protist Ribosomal Reference Database (PR2): A Catalog of Unicellular Eukaryote Small Sub-Unit rRNA Sequences with Curated Taxonomy. Nucleic Acids Res. 2012, 41, D597–D604. [Google Scholar] [CrossRef] [PubMed]
- Heller, P.; Casaletto, J.; Ruiz, G.; Geller, J. A Database of Metazoan Cytochrome c Oxidase Subunit I Gene Sequences Derived from GenBank with CO-ARBitrator. Sci. Data 2018, 5, 180156. [Google Scholar] [CrossRef] [PubMed]
- Bucklin, A.; Peijnenburg, K.T.C.A.; Kosobokova, K.N.; O’Brien, T.D.; Blanco-Bercial, L.; Cornils, A.; Falkenhaug, T.; Hopcroft, R.R.; Hosia, A.; Laakmann, S.; et al. Toward a Global Reference Database of COI Barcodes for Marine Zooplankton. Mar. Biol. 2021, 168, 78. [Google Scholar] [CrossRef]
- Lanzén, A.; Jørgensen, S.L.; Huson, D.H.; Gorfer, M.; Grindhaug, S.H.; Jonassen, I.; Øvreås, L.; Urich, T. CREST—Classification Resources for Environmental Sequence Tags. PLoS ONE 2012, 7, e49334. [Google Scholar] [CrossRef] [PubMed]
- Dawes, K.W.; Bachmann, M.; Zahn, R.K.; Müller, W.E.G. Partial Purification and Properties of a Chromatin Bound Endonuclease from the Marine Sponge Geodia Cydonium. Comp. Biochem. Physiol. Part B Comp. Biochem. 1983, 76, 763–768. [Google Scholar] [CrossRef]
- Williams, S.T. Safe and Legal Shipment of Tissue Samples: Does It Affect DNA Quality? J. Molluscan Stud. 2007, 73, 416–418. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.S. Comparative Analyses of the V4 and V9 Regions of 18S rDNA for the Extant Eukaryotic Community Using the Illumina Platform. Sci. Rep. 2020, 10, 6519. [Google Scholar] [CrossRef]
Database | Seq Source | No. of Studies | Reference |
---|---|---|---|
NCBI GenBank | NA | 56 | - |
SILVA | EMBL database | 25 | [191] |
BOLD Systems | NA | 14 | [192] |
PR2 | NCBI GenBank EMBL database WGS-EMBL | 8 | [193] |
MIDORI | NCBI GenBank | 6 | |
CO-ARBitrator | NCBI GenBank | 3 | [194] |
MLML COI DB | Private | 3 | [24,25,194] |
MZGdb | NCBI GenBank BOLD Systems | 3 | [195] |
V9_PR2 (and V2) | PR2 (18S V9) SILVA (prok. 16S) | 3 (1) | [36,98] |
DUFA-Leray | NCBI GenBank BOLD Systems | 2 | [32,33] |
ArCop | NCBI GenBank BOLD Systems | 1 | [31] |
SilvaMod | SILVA | 1 | [196] |
StreamCode | - | 1 | [57] |
Custom | NCBI GenBank BOLD Systems SILVA PR2 | 22 | - |
None | - | 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutinho, J.; Costa, F.O.; Duarte, S. Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments. J. Mar. Sci. Eng. 2024, 12, 2093. https://doi.org/10.3390/jmse12112093
Moutinho J, Costa FO, Duarte S. Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments. Journal of Marine Science and Engineering. 2024; 12(11):2093. https://doi.org/10.3390/jmse12112093
Chicago/Turabian StyleMoutinho, Jorge, Filipe O. Costa, and Sofia Duarte. 2024. "Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments" Journal of Marine Science and Engineering 12, no. 11: 2093. https://doi.org/10.3390/jmse12112093
APA StyleMoutinho, J., Costa, F. O., & Duarte, S. (2024). Advancements in DNA Metabarcoding Protocols for Monitoring Zooplankton in Marine and Brackish Environments. Journal of Marine Science and Engineering, 12(11), 2093. https://doi.org/10.3390/jmse12112093