Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach
Abstract
:1. Introduction
2. Robustness Quantification
2.1. Robust Optimization Overview
- Parameter uncertainty vectors’ () and design () parameter vectors’ definition:
- ;
- ,
where N is the number of system parameters affected by uncertainty, whose magnitude is described by the relative -element of the uncertainty vector , and D is the dimension of the design parameter vector , i.e., the number of decision elements that define each possible optimization problem solution. - Uncertainty propagation via sampling techniques.
- Robustness metric quantification.
2.2. Problem Formulation and Robustness Indices
- are the upper and lower bounds of the uncertainty parameters’ vector. The space resulting from limiting can be referred to as the parameter uncertainty space .
- are the upper and lower bounds of the design vector. The space resulting from limiting can be referred to as the parameter design space .
- represent q equality constraints.
- represent k inequality constraints.
- is the vector containing the potentially different m objective functions.
3. Methodology
3.1. Model
- is the combined gravitational and fluid forces acting on the floater.
- and represent the gyroscopic effects exchanged between the floater and the gyroscope units.
- is used to represent the PTO reaction acting on the gyroscope shaft.
- , , and describe the motion of the floater, gyroscope, and PTO, respectively.
- stands for the control signals generated via the ISWEC’s control system.
3.2. Framework
4. Results
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WEC | Wave energy converter |
LCoE | Levelized cost of energy |
RO | Robust optimization |
RI | Robustness index |
RQ | Robustness quantification |
RDO | Robust design optimization |
RBDO | Reliability-based design optimization |
Probability density function | |
GPR | Gaussian process regression |
LHS | Latin hypercube sampling |
WCS | Worst-case scenario |
PTO | Power take-off |
FDM | Frequency domain model |
TDM | Time domain model |
SDM | Spectral domain model |
PSD | Power spectral density |
CoG | Center of gravity |
1 | A comprehensive overview of the historical and commercial efforts to develop these technologies can be found in [6]. |
2 | For a normal distribution, approximately 68% of the data is within one standard deviation from the mean distribution value, roughly 95% within two , around 99.7% within three, and so on, almost reaching 100% with a six distance. This method is commonly used in the industrial product quality field
[46]. |
References
- Guterres, A. Carbon Neutrality by 2050: The World’s Mosturgent Mission. In United Nation Treaty Collection; United Nations Secretary General: New York, NY, USA, 2020; Available online: https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world%E2%80%99s-most-urgent-mission (accessed on 2 February 2024).
- IEA. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 2 February 2024).
- Reguero, B.; Losada, I.; Méndez, F. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- IRENA. Innovation Outlook: Ocean Energy Technologies; IRENA: Abu Dhabi, United Arab Emirates, 2020; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Innovation_Outlook_Ocean_Energy_2020.pdf (accessed on 2 February 2024).
- OES. An Internation Vision for OCcean Energy; Oceanic Energy System: Lisbon, Portugal, 2017; Available online: https://www.ocean-energy-systems.org/documents/24845-oes-vision-2017.pdf/ (accessed on 2 February 2024).
- Guo, B.; Ringwood, J.V. A review of wave energy technology from a research and commercial perspective. IET Renew. Power Gener. 2021, 15, 3065–3090. [Google Scholar] [CrossRef]
- Babarit, A.; Bull, D.; Dykes, K.; Malins, R.; Nielsen, K.; Costello, R.; Roberts, J.; Ferreira, C.B.; Kennedy, B.; Weber, J. Stakeholder requirements for commercially successful wave energy converter farms. Renew. Energy 2017, 113, 742–755. [Google Scholar] [CrossRef]
- Park, G.J.; Lee, T.H.; Lee, K.H.; Hwang, K.H. Robust design: An overview. AIAA J. 2006, 44, 181–191. [Google Scholar] [CrossRef]
- Moritz Göhler, S.; Eifler, T.; Howard, T.J. Robustness metrics: Consolidating the multiple approaches to quantify robustness. J. Mech. Des. 2016, 138, 111407. [Google Scholar] [CrossRef]
- Fusco, F.; Ringwood, J.V. Hierarchical robust control of oscillating wave energy converters with uncertain dynamics. IEEE Trans. Sustain. Energy 2014, 5, 958–966. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Mérigaud, A.; Faedo, N.; Fusco, F. An analytical and numerical sensitivity and robustness analysis of wave energy control systems. IEEE Trans. Control Syst. Technol. 2019, 28, 1337–1348. [Google Scholar] [CrossRef]
- Faedo, N.; García-Violini, D.; Scarciotti, G.; Astolfi, A.; Ringwood, J.V. Robust moment-based energy-maximising optimal control of wave energy converters. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4286–4291. [Google Scholar]
- Schoen, M.P.; Hals, J.; Moan, T. Wave prediction and robust control of heaving wave energy devices for irregular waves. IEEE Trans. Energy Convers. 2011, 26, 627–638. [Google Scholar] [CrossRef]
- Wahyudie, A.; Jama, M.; Saeed, O.; Noura, H.; Assi, A.; Harib, K. Robust and low computational cost controller for improving captured power in heaving wave energy converters. Renew. Energy 2015, 82, 114–124. [Google Scholar] [CrossRef]
- Na, J.; Li, G.; Wang, B.; Herrmann, G.; Zhan, S. Robust optimal control of wave energy converters based on adaptive dynamic programming. IEEE Trans. Sustain. Energy 2018, 10, 961–970. [Google Scholar] [CrossRef]
- Garcia-Violini, D.; Ringwood, J.V. Energy maximising robust control for spectral and pseudospectral methods with application to wave energy systems. Int. J. Control 2021, 94, 1102–1113. [Google Scholar] [CrossRef]
- Farajvand, M.; Grazioso, V.; García-Violini, D.; Ringwood, J.V. Uncertainty estimation in wave energy systems with applications in robust energy maximising control. Renew. Energy 2023, 203, 194–204. [Google Scholar] [CrossRef]
- Hiles, C.E.; Beatty, S.J.; De Andres, A. Wave energy converter annual energy production uncertainty using simulations. J. Mar. Sci. Eng. 2016, 4, 53. [Google Scholar] [CrossRef]
- Mackay, E.B.; Bahaj, A.S.; Challenor, P.G. Uncertainty in wave energy resource assessment. Part 1: Historic data. Renew. Energy 2010, 35, 1792–1808. [Google Scholar] [CrossRef]
- Mackay, E.B.; Bahaj, A.S.; Challenor, P.G. Uncertainty in wave energy resource assessment. Part 2: Variability and predictability. Renew. Energy 2010, 35, 1809–1819. [Google Scholar] [CrossRef]
- López-Ruiz, A.; Bergillos, R.J.; Lira-Loarca, A.; Ortega-Sánchez, M. A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays. Energy 2018, 153, 126–135. [Google Scholar] [CrossRef]
- Ambühl, S.; Kofoed, J.P.; Sørensen, J.D. Stochastic modeling of long-term and extreme value estimation of wind and sea conditions for probabilistic reliability assessments of wave energy devices. Ocean Eng. 2014, 89, 243–255. [Google Scholar] [CrossRef]
- Berque, J.; Minguela, P.R.; Crooks, D.; Thiebaut, F. Uncertainty in Wave Energy Converter Power Performance Assessment. Opera2020. 2019. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c480ec53&appId=PPGMS (accessed on 2 February 2024).
- Orphin, J.; Penesis, I.; Nader, J.R. Uncertainty analysis for a wave energy converter: The Monte Carlo method. In Proceedings of the 4th Asian Wave and Tidal Energy Conference AWTEC 2018, Taipei, Taiwan, 9–13 September 2018; p. 444. [Google Scholar]
- ITTC. Recommended Procedures General Guideline—Uncertainty Analysis in Resistance Tests. In Proceedings of the International Towing Tank Conference, Online, 13–18 June 2021. [Google Scholar]
- ITTC. Recommended Procedures and Guidelines—Guideline to Practical Implementation of Uncertainty Analysis. In Proceedings of the International Towing Tank Conference, Online, 13–18 June 2021. [Google Scholar]
- ITTC. Recommended Procedures and Guidelines—Uncertainty Analysis for a Wave Energy Converter. In Proceedings of the International Towing Tank Conference, Wuxi, China, 17–23 September 2017. [Google Scholar]
- Fenu, B.; Bonfanti, M.; Bardazzi, A.; Pilloton, C.; Lucarelli, A.; Mattiazzo, G. Experimental investigation of a Multi-OWC wind turbine floating platform. Ocean Eng. 2023, 281, 114619. [Google Scholar] [CrossRef]
- Sirigu, S.A.; Bonfanti, M.; Passione, B.; Begovic, E.; Bertorello, C.; Dafnakis, P.; Bracco, G.; Giorcelli, E.; Mattiazzo, G. Experimental investigation of the hydrodynamic performance of the ISWEC 1:20 scaled device. In Technology and Science for the Ships of the Future; IOS Press: Amsterdam, The Netherlands, 2018; pp. 551–560. [Google Scholar]
- Ambühl, S.; Kramer, M.; Sørensen, J.D. Reliability-based structural optimization of wave energy converters. Energies 2014, 7, 8178–8200. [Google Scholar] [CrossRef]
- Clark, C.E.; Garcia-Teruel, A.; DuPont, B.; Forehand, D. Towards reliability-based geometry optimization of a point-absorber with PTO reliability objectives. In Proceedings of the European Wave and Tidal Energy Conference, Naples, Italy, 1–6 September 2019; pp. 1–6. [Google Scholar]
- Clark, C.E.; DuPont, B. Reliability-based design optimization in offshore renewable energy systems. Renew. Sustain. Energy Rev. 2018, 97, 390–400. [Google Scholar] [CrossRef]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, Japan, 1986. [Google Scholar]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009; Volume 28. [Google Scholar]
- Soyster, A.L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust optimization–methodology and applications. Math. Program. 2002, 92, 453–480. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Beyer, H.G.; Sendhoff, B. Robust optimization–a comprehensive survey. Comput. Methods Appl. Mech. Eng. 2007, 196, 3190–3218. [Google Scholar] [CrossRef]
- Jin, Y.; Sendhoff, B. Trade-off between performance and robustness: An evolutionary multiobjective approach. In Evolutionary Multi-Criterion Optimization, International Conference on Evolutionary Multi-Criterion Optimization, Faro, Portugal, 8–11 April 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 237–251. [Google Scholar]
- Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 2005, 9, 303–317. [Google Scholar] [CrossRef]
- Deb, K.; Gupta, H. Introducing Robustness in Multi-Objective Optimization. Evol. Comput. 2006, 14, 463–494. [Google Scholar] [CrossRef]
- Deb, K.; Gupta, H. Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization. In Evolutionary Multi-Criterion Optimization, International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 150–164. [Google Scholar]
- Korolev, Y.; Toropov, V.; Shahpar, S. Design optimization under uncertainty using the multipoint approximation method. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; p. 1934. [Google Scholar]
- Paiva, R.M.; Crawford, C.; Suleman, A. Robust and reliability-based design optimization framework for wing design. AIAA J. 2014, 52, 711–724. [Google Scholar] [CrossRef]
- Giorcelli, F.; Sirigu, S.A.; Basile, D. Relevance of Robustness and Uncertainties Analysis in the Optimal Design of Wave Energy Converters. In Proceedings of the European Wave and Tidal Energy Conference, Bilbao, Spain, 3–7 September 2023; Volume 15. [Google Scholar]
- Kwak, Y.H.; Anbari, F.T. Benefits, obstacles, and future of six sigma approach. Technovation 2006, 26, 708–715. [Google Scholar] [CrossRef]
- Coppitters, D.; De Paepe, W.; Contino, F. Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty. Energy 2021, 229, 120692. [Google Scholar] [CrossRef]
- Coppitters, D.; De Paepe, W.; Contino, F. Surrogate-assisted robust design optimization and global sensitivity analysis of a directly coupled photovoltaic-electrolyzer system under techno-economic uncertainty. Appl. Energy 2019, 248, 310–320. [Google Scholar] [CrossRef]
- Forrester, A.; Sobester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Coppitters, D.; Contino, F. Optimizing upside variability and antifragility in renewable energy system design. Sci. Rep. 2023, 13, 9138. [Google Scholar] [CrossRef]
- Pozzi, N.; Bonetto, A.; Bonfanti, M.; Bracco, G.; Dafnakis, P.; Giorcelli, E.; Passione, B.; Sirigu, S.A.; Mattiazzo, G. PeWEC: Preliminary design of a full-scale plant for the mediterranean sea. In Technology and Science for the Ships of the Future; IOS Press: Amsterdam, The Netherlands, 2018; pp. 504–514. [Google Scholar]
- Bonfanti, M.; Bracco, G.; Dafnakis, P.; Giorcelli, E.; Passione, B.; Pozzi, N.; Sirigu, S.A.; Mattiazzo, G. Application of a passive control technique to the ISWEC: Experimental tests on a 1:8 test rig. In Technology and Science for the Ships of the Future, Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research, Trieste, Italy, 20–22 June 2018; IOS Press: Amsterdam, The Netherlands, 2018; p. 60. [Google Scholar]
- Folley, M. Numerical Modelling of Wave Energy Converters; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2. [Google Scholar] [CrossRef]
- Bonfanti, M.; Sirigu, S.A. Spectral-domain modelling of a non-linear wave energy converter: Analytical derivation and computational experiments. Mech. Syst. Signal Process. 2023, 198, 110398. [Google Scholar] [CrossRef]
- Faedo, N.; Giorgi, G.; Ringwood, J.; Mattiazzo, G. Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: Control-oriented modelling and moment-based control. Nonlinear Dyn. 2022, 109, 1777–1804. [Google Scholar] [CrossRef]
- Mérigaud, A.; Ringwood, J.V. Free-surface time-series generation for wave energy applications. IEEE J. Ocean. Eng. 2017, 43, 19–35. [Google Scholar] [CrossRef]
- Fang, K.T.; Li, R.; Sudjianto, A. Design and Modeling for Computer Experiments; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 1951, 52, 119–139. [Google Scholar]
- Gioia, D.G.; Pasta, E.; Brandimarte, P.; Mattiazzo, G. Data-driven control of a pendulum wave energy converter: A gaussian process regression approach. Ocean. Eng. 2022, 253, 111191. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Zhong, Q.; Yeung, R.W. On optimal energy-extraction performance of arrays of wave-energy converters, with full consideration of wave and multi-body interactions. Ocean. Eng. 2022, 250, 110863. [Google Scholar] [CrossRef]
- López-Ruiz, A.; Bergillos, R.J.; Raffo-Caballero, J.M.; Ortega-Sánchez, M. Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity. Appl. Energy 2018, 209, 20–32. [Google Scholar] [CrossRef]
Definition | Index |
---|---|
(I) Average value of the -performance probability density function (PDF). | , where is the quantity of samples used in order to evaluate the discrete PDF mean value. The same formulation results are valid for all the other Definitions in the present table. |
(II) Standard deviation of the -performance PDF. | . |
(III) The “k-sigma” approach. | , where k is an integer number commonly set equal to 3 or 62 |
(IV) Symmetric robustness index. | , with: and . |
(V) Asymmetric robustness index. | . |
(VI) The upper limit of the -performance PDF. | . |
Method | Advantage | Disadvantage |
---|---|---|
Stochastic RDO | Provide trade-off solutions and detailed information on the output under examination distribution. | Very computationally expensive. |
Deterministic RDO | Less computationally expensive. | Need the assumption of good behavior in the N-dimensional polytope. Overly conservative. |
Index | |||||
---|---|---|---|---|---|
NRMSE [/] | — | — | — | ||
Time [min] | — | — | |||
[/] | [%] | [%] | |||
[/] | [%] | [%] | |||
[/] | [%] | [%] | |||
[/] | [%] | [%] | |||
R [/] | [%] | [%] | |||
Q [/] | [%] | [%] |
Device | [/] | [/] | [/] |
---|---|---|---|
D1 | |||
D2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorcelli, F.; Sirigu, S.A.; Giorgi, G.; Faedo, N.; Bonfanti, M.; Ramello, J.; Giorcelli, E.; Mattiazzo, G. Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach. J. Mar. Sci. Eng. 2024, 12, 482. https://doi.org/10.3390/jmse12030482
Giorcelli F, Sirigu SA, Giorgi G, Faedo N, Bonfanti M, Ramello J, Giorcelli E, Mattiazzo G. Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach. Journal of Marine Science and Engineering. 2024; 12(3):482. https://doi.org/10.3390/jmse12030482
Chicago/Turabian StyleGiorcelli, Filippo, Sergej Antonello Sirigu, Giuseppe Giorgi, Nicolás Faedo, Mauro Bonfanti, Jacopo Ramello, Ermanno Giorcelli, and Giuliana Mattiazzo. 2024. "Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach" Journal of Marine Science and Engineering 12, no. 3: 482. https://doi.org/10.3390/jmse12030482
APA StyleGiorcelli, F., Sirigu, S. A., Giorgi, G., Faedo, N., Bonfanti, M., Ramello, J., Giorcelli, E., & Mattiazzo, G. (2024). Measuring the Robustness of Optimal Design Solutions for Wave Energy Converters via a Stochastic Approach. Journal of Marine Science and Engineering, 12(3), 482. https://doi.org/10.3390/jmse12030482