Review on the Hydro- and Thermo-Dynamic Wakes of Underwater Vehicles in Linearly Stratified Fluid
Abstract
:1. Introduction
2. Definition and Classification
2.1. Hydrodynamic Wakes of Underwater Vehicles
2.1.1. Bernoulli Hump
2.1.2. Kelvin Wake
2.1.3. Internal Wave
2.1.4. Wake Behavior in Stratified Fluids
2.2. Thermodynamic Wakes of Underwater Vehicles
2.2.1. Thermal Wake Due to Cooling Water Discharge
2.2.2. Cold Wake Due to Stirring of Stratified Water
3. Hydrodynamic Wakes in the Stratified Fluid
3.1. Theoretical Methods
3.2. Experimental Methods
3.3. Computational Fluid Dynamics
4. Thermodynamic Wakes in Stratified Fluid
4.1. Theoretical and Experimental Methods
4.2. Computational Fluid Dynamics
5. Conclusions
- After decades of research, there is now a thorough understanding of the evolution of wakes generated by simple geometric bodies, such as spheres and cylinders, in stratified fluids. Clear insights into the flow characteristics during the near-wake, non-equilibrium, and far-field developmental stages of wakes have been gained. Additionally, the understanding of the energy transport during wake evolution and the formation mechanisms and features of large-scale vortex streets has been greatly enhanced.
- In recent years, there has been a growing focus on the evolution characteristics of wakes generated by underwater vehicles with complex shapes. Changes in the hydrodynamic performance of underwater vehicles in linearly stratified flows of density and temperature, along with the extensive generation, evolution, and flow characteristics of hydrodynamic and thermodynamic wakes, have gradually become subjects of study. Comparisons with uniform flows demonstrate that the wakes of underwater vehicles in stratified flows exhibit a larger propagation range and a longer duration.
- Due to the complexity of the marine environment and limitations in experimental conditions, research on underwater vehicle wakes in stratified flows is often conducted at model scales. Currently, there is a lack of research on similarity criteria for flow fields in stratified fluids. In the study of the impact of speed, depth, and stratification on wakes, an effective establishment of a scaled ocean stratified environment, a similar relationship for the excitation of internal waves, and a correspondence between model-scale and full-scale wake propagation processes have not been established.
- With the advent of CFD technology, research methodologies have evolved from theoretical analysis and model experiments to predominantly numerical simulations, expanding toward complex geometries and high Reynolds numbers. Numerical simulations, relative to model experiments, provide more comprehensive information about the flow field.
- The discharge of cooling water from underwater vehicles is often coupled with the generation of hydrodynamic wakes, creating highly intertwined mechanisms for their generation and propagation. However, most current studies focus solely on either the hydrodynamic or thermodynamic wakes from underwater vehicles, with little research on the mixed or coupled propagation process.
- Extending the current understanding of wake evolution to encompass more complex geometries, especially those representing realistic underwater vehicles, will be crucial.
- Addressing the transition from model-scale experiments to full-scale wakes and establishing similarity criteria for flow fields in stratified fluids will enhance the applicability of findings to real-world scenarios.
- The increasing reliance on numerical simulations opens avenues for exploring complex geometries and high Reynolds numbers. Future research could delve deeper into refining numerical methods, focusing on enhancing fidelity while managing computational costs.
- Efforts should be directed towards bridging the gap between hydrodynamic and thermodynamic wakes, considering their intertwined nature during underwater vehicle operations.
- The mixed or coupled propagation processes resulting from the discharge of cooling water need more attention, as existing studies often focus on either hydrodynamic or thermodynamic aspects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
g | Gravitational acceleration |
L | Length |
N | Brunt–Väisälä frequency |
T | Time |
Characteristic velocity | |
v | Velocity |
x | Longitudinal coordinate |
y | Lateral coordinate |
z | Vertical coordinate |
Fr | Internal Froude number |
Re | Reynolds number |
St | Strouhal number |
Density | |
Kinematic viscosity |
Abbreviations
CCD | Charge-coupled device |
CFD | Computational fluid dynamics |
CPU | Central processing unit |
CRP | Contra-rotating propellers |
DES | Detached eddy simulation |
DNS | Direct numerical simulation |
ISW | Internal solitary wave |
JADIM | In-house computational code |
K-H | Kelvin–Helmholtz |
LES | Large eddy simulation |
MW | Megawatt |
NEQ | Non-equilibrium |
NW | Near wake |
PIV | Particle image velocimetry |
Q2D | Quasi-two-dimensional |
RANS | Reynolds-averaged Navier–Stokes |
SAR | Synthetic aperture radar |
SMPM | Spectral multidomain penalty method |
U. S. | United States |
WAS | Wide-area surveillance |
References
- Slimming, B.; Beniwal, D.; Devrelis, V.; Mau, J.; Delic, D. The non-acoustic signatures of underwater vehicles. In Ocean Sensing and Monitoring XV, Proceedings of the SPIE Defense + Commercial Sensing, Orlando, FL, USA, 30 April–5 May 2023; Spie Digital Library: Bellingham WA, USA, 2023; Volume 12543. [Google Scholar]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Xue, F.; Jin, W.; Qiu, S.; Yang, J. Wake features of moving submerged bodies and motion state inversion of submarines. IEEE Access 2020, 8, 12713–12724. [Google Scholar] [CrossRef]
- Naresh, P.; Santhanakrishnan, T.; Mathew, B. Detection of underwater targets in the ocean through non-acoustic methods. In Proceedings of the 2021 International Symposium on Ocean Technology (SYMPOL), Kochi, India, 9–11 December 2021; pp. 1–6. [Google Scholar]
- Stefanick, T. The nonacoustic detection of submarines. Sci. Am. 1988, 258, 41–47. [Google Scholar] [CrossRef]
- Baines, P.G. Upstream blocking and airflow over mountains. Annu. Rev. Fluid Mech. 1987, 19, 75–95. [Google Scholar] [CrossRef]
- Bonneton, P.; Chomaz, J.M.; Hopfinger, E.J. Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 1993, 254, 23–40. [Google Scholar] [CrossRef]
- Sutyrin, G.G.; Radko, T. The fate of pancake vortices. Phys. Fluids 2017, 29, 031701. [Google Scholar] [CrossRef]
- Mai, T.L.; Jeon, M.; Vo, A.K.; Yoon, H.K.; Kim, S.; Lee, J. Establishment of empirical formulae for hydrodynamic derivatives of submarine considering design parameters. Int. J. Nav. Archit. Ocean Eng. 2023, 15, 100537. [Google Scholar] [CrossRef]
- Bridges, D.H.; Blanton, J.N.; Brewer, W.H.; Park, J.T. Experimental investigation of the flow past a submarine at angle of drift. AIAA J. 2003, 41, 71–81. [Google Scholar] [CrossRef]
- Overpelt, B.; Nienhuis, B.; Anderson, B. Free running manoeuvring model tests on a modern generic SSK class submarine (BB2). In Proceedings of the Pacific International Maritime Conference, Sydney, Australia, 6–8 October 2015. [Google Scholar]
- Carrica, P.M.; Kim, Y.; Martin, J.E. Near-surface self-propulsion of a generic submarine in calm water and waves. Ocean Eng. 2019, 183, 87–105. [Google Scholar] [CrossRef]
- Carrica, P.M.; Kerkvliet, M.; Quadvlieg, F.; Martin, J.E. CFD simulations and experiments of a submarine in turn, zigzag, and surfacing maneuvers. J. Ship Res. 2020, 65, 293–308. [Google Scholar] [CrossRef]
- Carrica, P.M.; Kim, Y.; Martin, J.E. Vertical zigzag maneuver of a generic submarine. Ocean Eng. 2021, 219, 108386. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Yang, Z.; Wang, Z. Investigation of internal wave wakes generated by a submerged body in a stratified flow. Ocean Eng. 2022, 266, 112840. [Google Scholar] [CrossRef]
- Chongsiripinyo, K.; Sarkar, S. Decay of turbulent wakes behind a disk in homogeneous and stratified fluids. J. Fluid Mech. 2020, 885, A31. [Google Scholar] [CrossRef]
- Ortiz-Tarin, J.L.; Nidhan, S.; Sarkar, S. High-Reynolds-number wake of a slender body. J. Fluid Mech. 2021, 918, A30. [Google Scholar] [CrossRef]
- Ortiz-Tarin, J.L.; Nidhan, S.; Sarkar, S. The high-Reynolds-number stratified wake of a slender body and its comparison with a bluff-body wake. J. Fluid Mech. 2023, 957, A7. [Google Scholar] [CrossRef]
- Sudharsun, G.; Ali, A.; Mitra, A.; Jaiswal, A.; Naresh, P.; Warrior, H.V. Free surface features of submarines moving underwater: Study of Bernoulli Hump. Ocean Eng. 2022, 249, 110792. [Google Scholar]
- Rabaud, M.; Moisy, F. Ship Wakes: Kelvin or Mach Angle? Phys. Rev. Lett. 2013, 110, 214503. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.M.; Sphaier, S.H.; Vitola, M.A.; Esperança, P.T. Investigation into the wave system of a generic submarine moving along a straight path beneath the free surface. Eur. J. Mech. B/Fluids 2019, 76, 98–114. [Google Scholar] [CrossRef]
- Garrett, C.; Munk, W. Internal waves in the ocean. Annu. Rev. Fluid Mech. 1979, 11, 339–369. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Mceachern, G.B.; Fernando, H.J.S.; Boyer, D.L. Large vortex structures behind a maneuvering body in stratified fluids. Phys. Fluids 1999, 11, 1682–1684. [Google Scholar] [CrossRef]
- Bondur, V.G.; Ivanov, V.A.; Fomin, V.V. Peculiarities of polluted water spreading from a submarine source in stratified coastal environment. Izv. Atmos. Ocean. Phys. 2018, 54, 386–393. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Gao, J.; Tan, J.; Zhou, Z. Numerical study of surface thermal signatures of lee waves excited by moving underwater sphere at low Froude number. Ocean Eng. 2021, 235, 109314. [Google Scholar] [CrossRef]
- Rott, N. Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 1990, 22, 1–12. [Google Scholar] [CrossRef]
- Oertel, H., Jr. Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 1990, 22, 539–562. [Google Scholar] [CrossRef]
- Spedding, G.R. Wake signature detection. Annu. Rev. Fluid Mech. 2014, 46, 273–302. [Google Scholar] [CrossRef]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107065505. [Google Scholar]
- Hudimac, A.A. Ship waves in a stratified ocean. J. Fluid Mech. 1961, 11, 229–243. [Google Scholar] [CrossRef]
- Keller, J.B.; Munk, W.H. Internal Wave Wakes of a Body Moving in a Stratified Fluid. Phys. Fluids 1970, 13, 1425–1431. [Google Scholar] [CrossRef]
- Voisin, B. Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and point sources. J. Fluid Mech. 1991, 231, 439–480. [Google Scholar] [CrossRef]
- Voisin, B. Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources. J. Fluid Mech. 1994, 261, 333–374. [Google Scholar] [CrossRef]
- Zhu, R.C.; Gao, Y.; Miao, G.P.; Yao, Z.C. Green’s function of internal waves in uniformly stratified fluid. J. Shanghai Jiaotong Univ. 2016, 50, 265–271. [Google Scholar]
- Miles, J.W. Lee waves in a stratified flow Part 1. Thin barrier. J. Fluid Mech. 1968, 32, 549–567. [Google Scholar] [CrossRef]
- Miles, J.W.; Huppert, H.E. Lee waves in a stratified flow. Part 2. Semi-circular obstacle: Appendix. J. Fluid Mech. 1968, 33, 803–814. [Google Scholar] [CrossRef]
- Miles, J.W.; Huppert, H.E. Lee waves in a stratified flow. Part 4. Perturbation approximations. J. Fluid Mech. 1969, 35, 497–525. [Google Scholar] [CrossRef]
- Huppert, H.E.; Miles, J.W. Lee waves in a stratified flow Part 3. Semi-elliptical obstacle. J. Fluid Mech. 1969, 35, 481–496. [Google Scholar] [CrossRef]
- Long, R.R. Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus 1953, 5, 42–58. [Google Scholar] [CrossRef]
- Long, R.R. Some aspects of the flow of stratified fluids: II. Experiments with a two-fluid system. Tellus 1954, 6, 97–115. [Google Scholar] [CrossRef]
- Long, R.R. Some aspects of the flow of stratified fluids: III. Continuous density gradients. Tellus 1955, 7, 341–357. [Google Scholar] [CrossRef]
- Tuck, E.O. Submarine Internal Waves; Materials Research Laboratory: Maribyrnong, Australia, 1993. [Google Scholar]
- Motygin, O.V.; Kuznetsov, N.G. The wave resistance of a two-dimensional body moving forward in a two-layer fluid. J. Eng. Math. 1997, 32, 53–72. [Google Scholar] [CrossRef]
- Radko, T. Ship Waves in a Stratified Fluid. J. Ship Res. 2001, 45, 1–12. [Google Scholar] [CrossRef]
- Stefanick, T. Strategic Antisubmarine Warfare and Naval Strategy; Lexington Books: Lexington, MA, USA, 1987. [Google Scholar]
- Afanasyev, Y.D. Wakes behind towed and self-propelled bodies: Asymptotic theory. Phys. Fluids 2004, 16, 3235–3238. [Google Scholar] [CrossRef]
- Chomaz, J.M.; Bonneton, P.; Hopfinger, E.J. The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 1993, 254, 1–21. [Google Scholar] [CrossRef]
- Lin, Q.; Lindberg, W.R.; Boyer, D.L.; Fernando, H.J.S. Stratified flow past a sphere. J. Fluid Mech. 1992, 240, 315–354. [Google Scholar] [CrossRef]
- Meunier, P.; Spedding, G.R. Stratified propelled wakes. J. Fluid Mech. 2006, 552, 229–256. [Google Scholar] [CrossRef]
- Spedding, G.R.; Browand, F.K.; Fincham, A.M. The long-time evolution of the initially turbulent wake of a sphere in a stable stratification. Dyn. Atmos. Oceans 1996, 23, 171–182. [Google Scholar] [CrossRef]
- Spedding, G.R.; Browand, F.K.; Fincham, A.M. Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 1996, 314, 53–103. [Google Scholar] [CrossRef]
- Spedding, G.R. The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 1997, 337, 283–301. [Google Scholar] [CrossRef]
- Derakhshandeh, J.F.; Alam, M.M. A review of bluff body wakes. Ocean Eng. 2019, 182, 475–488. [Google Scholar] [CrossRef]
- Thompson, M.C.; Leweke, T.; Hourigan, K. Bluff bodies and wake–wall interactions. Annu. Rev. Fluid Mech. 2021, 53, 347–376. [Google Scholar] [CrossRef]
- Bonnier, M.; Eiff, O.; Bonneton, P. On the density structure of far-wake vortices in a stratified fluid. Dyn. Atmos. Oceans 2000, 31, 117–137. [Google Scholar] [CrossRef]
- Spedding, G.R. The streamwise spacing of adjacent coherent structures in stratified wakes. Phys. Fluids 2002, 14, 3820–3828. [Google Scholar] [CrossRef]
- Bonnier, M.; Eiff, O. Experimental investigation of the collapse of a turbulent wake in a stably stratified fluid. Phys. Fluids 2002, 14, 791–801. [Google Scholar] [CrossRef]
- De Silva, I.; Fernando, H. Some aspects of mixing in a stratified turbulent patch. J. Fluid Mech. 1992, 240, 601–625. [Google Scholar] [CrossRef]
- Lin, Q.; Boyer, D.L.; Fernando, H.J.S. Turbulent wakes of linearly stratified flow past a sphere. Phys. Fluids 1992, 4, 1687–1696. [Google Scholar] [CrossRef]
- Lofquist, K.E.B.; Purtell, L.P. Drag on a sphere moving horizontally through a stratified liquid. J. Fluid Mech. 1984, 148, 271–284. [Google Scholar] [CrossRef]
- Honji, H. Near wakes of a sphere in a stratified fluid. Fluid Dyn. Res. 1987, 2, 75–76. [Google Scholar] [CrossRef]
- Kopp, G.A.; Keffer, J.F. Coherent structures in two uniformly distorted plane turbulent wakes. Phys. Fluids 1996, 8, 2706–2711. [Google Scholar] [CrossRef]
- Fonseka, S.V.; Fernando, H.; Van Heijst, G. Evolution of an isolated turbulent region in a stratified fluid. J. Geophys. Res. 1998, 103, 24–868. [Google Scholar] [CrossRef]
- Praud, O.; Fincham, A.M. The structure and dynamics of dipolar vortices in a stratified fluid. J. Fluid Mech. 2005, 544, 1–22. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Fernando, H.J.S.; Morrison, R. Dipolar eddies in a decaying stratified turbulent flow. Phys. Fluids 2008, 20, 26602. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Smirnov, S.A. Vortex streets generated by a moving momentum source in a stratified fluid. Phys. Fluids 2003, 15, 618–624. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Fernando, H.J.S.; Smirnov, S.A.; Morrison, R. On surface signatures generated by submerged momentum sources. Phys. Fluids 2007, 19, 76603. [Google Scholar] [CrossRef]
- Chen, K.; You, Y.; Noblesse, F. Experimental study of quasi-2D dipolar vortex streets generated by a moving momentum source in a stratified fluid. Phys. Fluids 2016, 28, 75105. [Google Scholar] [CrossRef]
- Gourlay, M.J.; Arendt, S.C.; Fritts, D.C.; Werne, J. Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids 2001, 13, 3783–3802. [Google Scholar] [CrossRef]
- Dommermuth, D.G.; Innis, G.E.; Novikov, E.A.; Rottman, J.W. Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 2002, 473, 83–101. [Google Scholar] [CrossRef]
- Diamessis, P.J.; Domaradzki, J.A.; Hesthaven, J.S. A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J. Comput. Phys. 2005, 202, 298–322. [Google Scholar] [CrossRef]
- Meunier, P.; Diamessis, P.J.; Spedding, G.R. Self-preservation in stratified momentum wakes. Phys. Fluids 2006, 18, 106601. [Google Scholar] [CrossRef]
- Diamessis, P.J.; Domaradzki, J.A.; Spedding, G.R. Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 2011, 671, 52–95. [Google Scholar] [CrossRef]
- Riley, J.J.; Debruynkops, S.M. Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 2003, 15, 2047–2059. [Google Scholar] [CrossRef]
- Waite, M.L.; Bartello, P. Stratified turbulence dominated by vortical motion. J. Fluid Mech. 2004, 517, 281–308. [Google Scholar] [CrossRef]
- Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 2007, 585, 343–368. [Google Scholar] [CrossRef]
- Deloncle, A.; Billant, P.; Chomaz, J. Nonlinear evolution of the zigzag instability in stratified fluids: A shortcut on the route to dissipation. J. Fluid Mech. 2008, 599, 229–239. [Google Scholar] [CrossRef]
- Augier, P.; Billant, P. Onset of secondary instabilities on the zigzag instability in stratified fluids. J. Fluid Mech. 2011, 682, 120–131. [Google Scholar] [CrossRef]
- Augier, P.; Billant, P.; Chomaz, J. Spectral analysis of the transition to turbulence from a dipole in stratified fluid. J. Fluid Mech. 2012, 713, 86–108. [Google Scholar] [CrossRef]
- Brucker, K.A.; Sarkar, S. A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech. 2010, 652, 373–404. [Google Scholar] [CrossRef]
- de Stadler, M.B.; Sarkar, S. Simulation of a propelled wake with moderate excess momentum in a stratified fluid. J. Fluid Mech. 2012, 692, 28–52. [Google Scholar] [CrossRef]
- Abdilghanie, A.M.; Diamessis, P.J. The internal gravity wave field emitted by a stably stratified turbulent wake. J. Fluid Mech. 2013, 720, 104–139. [Google Scholar] [CrossRef]
- Redford, J.A.; Lund, T.S.; Coleman, G.N. A numerical study of a weakly stratified turbulent wake. J. Fluid Mech. 2015, 776, 568–609. [Google Scholar] [CrossRef]
- Pasquetti, R. Temporal/spatial simulation of the stratified far wake of a sphere. Comput. Fluids 2011, 40, 179–187. [Google Scholar] [CrossRef]
- Vandine, A.; Chongsiripinyo, K.; Sarkar, S. Hybrid spatially-evolving DNS model of flow past a sphere. Comput. Fluids 2018, 171, 41–52. [Google Scholar] [CrossRef]
- Orr, T.S.; Domaradzki, J.A.; Spedding, G.R.; Constantinescu, G.S. Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at Re = 1000. Phys. Fluids 2015, 27, 35113. [Google Scholar] [CrossRef]
- Pal, A.; Sarkar, S.; Posa, A.; Balaras, E. Regeneration of turbulent fluctuations in low-Froude-number flow over a sphere at a Reynolds number of 3700. J. Fluid Mech. 2016, 804, R2. [Google Scholar] [CrossRef]
- Magnaudet, J.; Mercier, M.J. Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 2020, 52, 61–91. [Google Scholar] [CrossRef]
- Zhang, J.; Mercier, M.J.; Magnaudet, J. Core mechanisms of drag enhancement on bodies settling in a stratified fluid. J. Fluid Mech. 2019, 875, 622–656. [Google Scholar] [CrossRef]
- Ortiz-Tarin, J.L.; Chongsiripinyo, K.C.; Sarkar, S. Stratified flow past a prolate spheroid. Phys. Rev. Fluids 2019, 4, 94803. [Google Scholar] [CrossRef]
- Zhou, Q.; Diamessis, P.J. Large-scale characteristics of stratified wake turbulence at varying Reynolds number. Phys. Rev. Fluids 2019, 4, 84802. [Google Scholar] [CrossRef]
- Esmaeilpour, M. A ship Advancing in a Stratified Fluid: The Dead Water Effect Revisited. Doctoral Dissertation, University of Iowa, Iowa City, IA, USA, 2017. [Google Scholar]
- Liu, S.; He, G.; Wang, Z.; Luan, Z.; Zhang, Z.; Wang, W.; Gao, Y. Resistance and flow field of a submarine in a density stratified fluid. Ocean Eng. 2020, 217, 107934. [Google Scholar] [CrossRef]
- Li, J.; Martin, J.E.; Carrica, P.M. Large-scale simulation of ship bubbly wake during a maneuver in stratified flow. Ocean Eng. 2019, 173, 643–658. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Ding, Y.; Hu, K.; Lan, L. Numerical simulations of linearly stratified flow past submerged bodies. Pol. Marit. Res. 2018, 25, 68–77. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Ding, Y.; Duan, F.; Hu, K. Numerical investigation of internal wave and free surface wave induced by the DARPA SUBOFF moving in a strongly stratified fluid. Ships Offshore Struct. 2020, 15, 587–604. [Google Scholar] [CrossRef]
- Cao, L.; Huang, F.; Wan, D.; Gao, Y. Computational Analysis of Sphere Wakes in a Linearly Stratified Fluid. Int. J. Offshore Pol. Eng. 2021, 31, 309–315. [Google Scholar] [CrossRef]
- Cao, L.; Huang, F.; Liu, C.; Wan, D. Vortical structures and wakes of a sphere in homogeneous and density stratified fluid. J. Hydrodyn. 2021, 33, 207–215. [Google Scholar] [CrossRef]
- Cao, L.; Gao, G.; Guo, E.; Wan, D. Hydrodynamic performances and wakes induced by a generic submarine operating near the free surface in continuously stratified fluid. J. Hydrodyn. 2023, 35, 396–406. [Google Scholar] [CrossRef]
- Huang, F.; Meng, Q.; Cao, L.; Wan, D. Wakes and free surface signatures of a generic submarine in the homogeneous and linearly stratified fluid. Ocean Eng. 2022, 250, 111062. [Google Scholar] [CrossRef]
- Shi, C.; Cheng, X.; Liu, Z.; Han, K.; Liu, P.; Jiang, L. Numerical simulation of the maneuvering motion wake of an underwater vehicle in stratified fluid. J. Mar. Sci. Eng. 2022, 10, 1672. [Google Scholar] [CrossRef]
- Jones, M.C.; Paterson, E.G. Influence of propulsion type on the stratified near wake of an axisymmetric self-propelled body. J. Mar. Sci. Eng. 2018, 6, 46. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Liu, Q.; Zhao, S.; Li, Z.; Kaidi, S.; Hu, H.; Chen, X.; Du, P. Dynamics and “falling deep” mechanism of submerged floating body under internal solitary waves. Ocean Eng. 2023, 288, 116058. [Google Scholar] [CrossRef]
- Li, Z.; Hu, H.; Wang, C.; Xie, Z.; Chen, X.; Yuan, Z.; Du, P. Hydrodynamics and stability of oblique water entry in waves. Ocean Eng. 2024, 292, 116506. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Chen, T. Numerical investigation of internal solitary wave forces on submarines in continuously stratified fluids. J. Mar. Sci. Eng. 2021, 9, 1374. [Google Scholar] [CrossRef]
- He, G.; Xie, H.; Zhang, Z.; Liu, S. Numerical investigation of internal solitary wave forces on a moving submarine. J. Mar. Sci. Eng. 2022, 10, 1020. [Google Scholar] [CrossRef]
- Moser, P.M. Infrared Wake Detection; Anti-Submarine Warfare Laboratory, Naval Air Development Center: Warminster, PA, USA, 1959. [Google Scholar]
- Yu, J.; Campos, E.; Du, Y.; Eldevik, T.; Gille, S.T.; Losada, T.; Mcphaden, M.J.; Smedsrud, L.H. Variability of the oceans, In Interacting Climates of Ocean Basins; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Moser, P.M. Submarine Wake Detection Program; Anti-Submarine Warfare Laboratory, Naval Air Development Center: Warminster, PA, USA, 1959. [Google Scholar]
- Gebhart, B.; Hilder, D.S.; Kelleher, M. The diffusion of turbulent buoyant jets. Adv. Heat Transf. 1984, 16, 1–57. [Google Scholar]
- Garrett, W.D.; Smith, P.M. Physical and Chemical Factors Affecting the Thermal IR Imagery of Ship Wakes; Naval Research Laboratory: Washington, DC, USA, 1984. [Google Scholar]
- Peltzer, R.; Garrett, W.; Smith, P. A remote sensing study of a surface ship wake. In Proceedings of the OCEANS’85—Ocean Engineering and the Environment, San Diego, CA, USA, 12–14 November 1985; pp. 277–286. [Google Scholar]
- Schwartz, I.B.; Priest, R.G. Reflection Driven Ship Wake Contrasts in the Infrared; NRL Report 9144; Naval Research Laboratory: Stennis Space Center, MS, USA, 1988. [Google Scholar]
- Yang, W.; Zhang, Z.; Li, J.; Yu, Z. Thermal wakes detectability of submerged objects based on scale model. Infrared Laser Eng. 2016, 45, 302002. [Google Scholar] [CrossRef]
- Smith, G.B.; Volino, R.J.; Handler, R.A.; Leighton, R.I. The thermal signature of a vortex pair impacting a free surface. J. Fluid Mech. 2001, 444, 49–78. [Google Scholar] [CrossRef]
- Judd, K.P.; Smith, G.B.; Handler, R.A.; Sisodia, A. The thermal signature of a low Reynolds number submerged turbulent jet impacting a free surface. Phys. Fluids 2008, 20, 115102. [Google Scholar] [CrossRef]
- Moody, Z.E.; Merriam, C.J.; Radko, T.; Joseph, J. On the structure and dynamics of stratified wakes generated by submerged propagating objects. J. Oper. Oceanogr. 2017, 10, 191–204. [Google Scholar] [CrossRef]
- Voropayev, S.I.; Nath, C.; Fernando, H. Thermal surface signatures of ship propeller wakes in stratified waters. Phys. Fluids 2012, 24, 116603. [Google Scholar] [CrossRef]
- Luo, F.; Shuai, C.; Du, Y.; Ma, J. Thermal characteristics of vehicle wake induced by the interaction between hydrodynamic wake and cold skin. Ocean Eng. 2023, 267, 113272. [Google Scholar] [CrossRef]
- Li, G.; Du, Y.; Yang, L. Simulation Study on Thermal Wake Characteristics of Underwater Vehicle under Rotary Motion. Appl. Sci. 2023, 13, 1531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Pan, Y.; Gao, G.; Li, L.; Wan, D. Review on the Hydro- and Thermo-Dynamic Wakes of Underwater Vehicles in Linearly Stratified Fluid. J. Mar. Sci. Eng. 2024, 12, 490. https://doi.org/10.3390/jmse12030490
Cao L, Pan Y, Gao G, Li L, Wan D. Review on the Hydro- and Thermo-Dynamic Wakes of Underwater Vehicles in Linearly Stratified Fluid. Journal of Marine Science and Engineering. 2024; 12(3):490. https://doi.org/10.3390/jmse12030490
Chicago/Turabian StyleCao, Liushuai, Yanyan Pan, Gang Gao, Linjie Li, and Decheng Wan. 2024. "Review on the Hydro- and Thermo-Dynamic Wakes of Underwater Vehicles in Linearly Stratified Fluid" Journal of Marine Science and Engineering 12, no. 3: 490. https://doi.org/10.3390/jmse12030490
APA StyleCao, L., Pan, Y., Gao, G., Li, L., & Wan, D. (2024). Review on the Hydro- and Thermo-Dynamic Wakes of Underwater Vehicles in Linearly Stratified Fluid. Journal of Marine Science and Engineering, 12(3), 490. https://doi.org/10.3390/jmse12030490