The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Construction of the Stratigraphic Age and Sedimentation Rate Frameworks Based on AMS 14C
3.2. Changes in Major Elements
3.3. Changes in Organic Matter
3.4. Changes in Carbonate Contents
4. Discussion
4.1. Response of Sedimentary Environments in the Beibu Gulf to Sea Level and Sea Surface Temperature (SST) in the South China Sea over the Past 20,000 years
4.1.1. Changes in Sea Level and SST and the Sedimentary Environment Indicators
4.1.2. Establishment of a “Simplified Age-Depth Framework” and Phasing of Sedimentary Evolution
4.2. Response of the Intensity of Terrestrial Weathering in the Potential Source Area to Climate Events in East Asia over the Past 20,000 Years
4.2.1. Source Area Analysis of Core Sediments
4.2.2. Effective Chemical Weathering Intensity
4.2.3. Response of Chemical Weathering Intensity Changes Recorded in Core to the Last Major Climate Event
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Jiang, F.; Wan, S.; Zhang, J.; Li, A.; Li, T. Terrigenous supplies variability over the past 22,000 yr in the southern South China Sea slope: Relation to sea level and monsoon rainfall changes. J. Asian Earth Sci. 2016, 117, 317–327. [Google Scholar] [CrossRef]
- Li, M.; Ouyang, T.; Tian, C.; Zhu, Z.; Peng, S.; Tang, Z.; Qiu, Y.; Zhong, H.; Peng, X. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr. J. Asian Earth Sci. 2019, 171, 213–224. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Colin, C.; Stattegger, K.; Wiesner, M.G.; Huh, C.A.; Zhang, Y.; Li, X.; Sompongchaiyakul, P.; You, C.F.; et al. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth Sci. Rev. 2016, 153, 238–273. [Google Scholar] [CrossRef]
- Liu, F.; Yang, C.; Chang, X.; Liao, Z. Provenance discrimination of the last glacial sediments from the northeastern South China Sea and its paleoenvironmental indications. Terr. Atmos. Ocean. Sci. 2018, 29, 131–148. [Google Scholar] [CrossRef]
- Hanebuth, T.; Stattegger, K.; Grootes, P.M. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science 2000, 288, 1033–1035. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Lambeck, K.; De Deckker, P.; Johnston, P.; Fifield, K.L. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 2000, 406, 713–716. [Google Scholar] [CrossRef]
- Rohling, E.J.; Grant, K.; Bolshaw, M.; Roberts, A.P.; Siddall, M.; Hemleben, C.; Kucera, M. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2009, 2, 500–504. [Google Scholar] [CrossRef]
- Pelejero, C.; Grimalt, J.O. The correlation between the 37 k index and sea surface temperatures in the warm boundary: The South China Sea. Geochim. Cosmochim. Acta 1997, 61, 4789–4797. [Google Scholar] [CrossRef]
- Pelejero, C.; Grimalt, J.O.; Heilig, S.; Kienast, M.; Wang, L. High-resolution UK 37 temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 1999, 14, 224–231. [Google Scholar] [CrossRef]
- Xia, P.; Meng, X.; Li, Z.; Zhi, P.; Zhao, M.; Wang, E. Late Holocene mangrove development and response to sea level change in the northwestern South China Sea. Acta Oceanol. Sin. 2019, 38, 111–120. [Google Scholar] [CrossRef]
- Zhou, G.; Cao, X.; Xia, J.; Wang, S.; Song, Z. A Dramatic Marine Environment Change in the Beibu Gulf of the South China Sea around 3.2 kyr BP. Lithosphere 2022, 2022, 2632112. [Google Scholar] [CrossRef]
- Wang, J.Y.; Bai, W.M.; Wang, Z.B.; Wang, M.H.; Li, B.J. Holocene climate evolution in eastern China and its correspondence with climate events. Mar. Geol. Quat. Geol. 2022, 2, 167–177. [Google Scholar]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; DeMenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Wang, S.W. Holocene cold events in the North Atlantic: Chronology and climate impact. Quat. Res. 2009, 29, 1146–1153. [Google Scholar]
- Li, X.; Liu, X.; Pan, Z.; Shi, Z.; Xie, X.; Ma, H.; Zhai, J.; Liu, H.; Xie, X.; Dai, A. Transient vegetation degradation reinforced rapid climate change (RCC) events during the Holocene. npj Clim. Atmos. Sci. 2023, 6, 125. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Pan, Z.; Xie, X.; Shi, Z.; Wang, Z.; Bai, A. Orbital-scale dynamic vegetation feedback caused the Holocene precipitation decline in northern China. Commun. Earth Environ. 2022, 3, 257. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Zhao, J.D.; Wang, J.; Xu, L.B.; Cui, J.X.; Ou, X.J.; Xie, J.M. Quaternary cryosphere-Long-scale study of global change. J. China Acad. Sci. 2020, 4, 475–483. [Google Scholar] [CrossRef]
- Wu, K.; Shi, X.; Lou, Z.; Wu, B.; Li, J.; Zhang, H.; Cao, P.; Rahim Mohamed, C.A. Sedimentary responses to climate changes and human activities over the past 7400 Years in the western sunda shelf. Front. Earth Sci. 2021, 9, 631815. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Beug, H.J. Pollen distribution in hemipelagic surface sediments of the South China Sea and its relation to modern vegetation distribution. Mar. Geol. 1999, 156, 211–226. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Li, Y.; Zhao, J. Palynological records of Holocene monsoon change from the Gulf of Tonkin (Beibuwan), northwestern South China Sea. Quat. Res. 2010, 74, 8–14. [Google Scholar] [CrossRef]
- Huang, X.Q.; Liang, K.; Xi, L.; Xia, Z.; Zhang, S.Z. Holocene transgression evolution in Beibu Gulf and its relationship with climate and glaciers. Acta Geologica Sinica 2022, 1, 49–64. [Google Scholar]
- Cui, Z.; Schulz-Bull, D.E.; Hou, Y.; Xia, Z.; Waniek, J.J. Geochemical characteristics and provenance of Holocene sediments (core STAT22) in the Beibu Gulf, South China Sea. J. Coast. Res. 2016, 32, 1105–1115. [Google Scholar] [CrossRef]
- Li, M.; Ouyang, T.; Roberts, A.P.; Heslop, D.; Zhu, Z.; Zhao, X.; Tian, C.; Peng, S.; Zhong, H.; Peng, X.; et al. Influence of sea level change and centennial East Asian monsoon variations on northern South China Sea sediments over the past 36 kyr. Geochem. Geophys. Geosyst. 2018, 19, 1674–1689. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Wan, S.M.; Ju, M.S.; Pei, W.Q.; Jin, H.L.; Zhang, J.; Li, A.C. Sr-Nd isotope and rare earth element evidence of sediment sources and weathering evolution in the northwest of the South China Sea since the last glacial period. Bull. Miner. Rock Geochem. 2023, 4, 702–716+682–683. [Google Scholar] [CrossRef]
- Wan, S.M.; Qin, L.; Yang, S.Y.; Zhao, D.B.; Zhang, J.; Jiao, D.F.; Li, T.G. Glacial shelf weathering and carbon cycle in the South China Sea. Quat. Study 2020, 6, 1532–1549. [Google Scholar]
- GB/T 14506.31-2019; Chemical Analysis Methods of Silicate Rocks Part 31: Determination of 12 Components Such as Silica—Lithium Metaborate Melting-Inductively Coupled Plasma Atomic Emission Spectrometry. National Technical Committee for Standardization of Land and Resources: Geneva, Switzerland, 2019.
- GB/T 14506.30-2010; Chemical Analysis Methods of Silicate Rocks Part 30: Determination of 44 Elements. National Technical Committee for Standardization of Land and Resources: Geneva, Switzerland, 2010.
- Wang, A.H.; Ye, S.Y.; Liu, J.K.; Ding, X.G.; Li, H.L.; Xu, N.C. Discussion on the discrimination of marine sedimentary environment with different selective extraction methods of strontium and barium ratio—Taking the modern Yellow River Delta as an example. Acta Sedimentol. 2020, 6, 1226–1238. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Tanabe, S.; Hori, K.; Saito, Y.; Haruyama, S.; Kitamura, A. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quat. Sci. Rev. 2003, 22, 2345–2361. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S.; Machain-Castillo, M.L.; Rosales-Hoz, L.; Carranza-Edwards, A.; Sanchez-Cabeza, J.A.; Ruíz-Fernández, A.C. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Cont. Shelf Res. 2015, 95, 15–26. [Google Scholar] [CrossRef]
- Liu, Y.J. Element Geochemistry; Science Press: Beijing, China, 1984. [Google Scholar]
- Wang, A.; Wang, Z.; Liu, J.; Xu, N.; Li, H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem. Geol. 2021, 559, 119923. [Google Scholar] [CrossRef]
- Dashtgard, S.E.; Wang, A.; Pospelova, V.; Wang, P.L.; La Croix, A.; Ayranci, K. Salinity indicators in sediment through the fluvial-to-marine transition (Fraser River, Canada). Sci. Rep. 2022, 12, 14303. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 1994, 114, 289–302. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Thornton, S.F.; McManus, J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuar. Coast. Shelf Sci. 1994, 38, 219–233. [Google Scholar] [CrossRef]
- Milliman, J.D.; Qinchun, X.; Zuosheng, Y. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean. Am. J. Sci. 1984, 284, 824–834. [Google Scholar] [CrossRef]
- Middelburg, J.J.; Nieuwenhuize, J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar. Chem. 1998, 60, 217–225. [Google Scholar] [CrossRef]
- Chmura, G.L.; Aharon, P. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. J. Coast. Res. 1995, 11, 124–135. Available online: http://www.jstor.org/stable/4298316 (accessed on 1 October 2023).
- Khan, N.S.; Vane, C.H.; Horton, B.P. Stable carbon isotope and C/N geochemistry of coastal wetland sediments as a sea-level indicator. Handb. Sea-Level Res. 2015, 295–311. [Google Scholar] [CrossRef]
- Zhang, N. The Mineralogical Characteristics of the Sediments and Its Environmental Significance in the Beibuwan Gulf; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- Ni, Y.G.Y.; Xia, Z.; Ma, S.Z. The opening of Qiongzhou Strait: Evidence from sub-bottom profiles. Mar. Geol. Quat. Geol. 2014, 34, 79–82. [Google Scholar]
- Li, C.R.; Yang, X.; Fan, C.; Hu, L.; Dai, L.; Zhao, S. On the Evolution Process of the Beibu Gulf Basin and Forming Mechanism of Local Structures. Acta Geol. Sin. 2018, 92, 2028–2039. [Google Scholar] [CrossRef]
- Kaboth-Bahr, S.; Bahr, A.; Yamoah, K.A.; Chuang, C.K.; Li, H.C.; Su, C.C.; Wei, K.Y. Rapid humidity changes across the Northern South China Sea during the last ~40 kyrs. Mar. Geol. 2021, 440, 106579. [Google Scholar] [CrossRef]
- Snyder, C.W. Evolution of global temperature over the past two million years. Nature 2016, 538, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Clift, P.D.; Zhao, D.; Hovius, N.; Munhoven, G.; France-Lanord, C.; Wang, Y.; Xiong, Z.; Huang, J.; Yu, Z.; et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochim. Cosmochim. Acta 2017, 200, 123–144. [Google Scholar] [CrossRef]
- Cang, S.C.; Chen, L.R.; Dong, T.L. Study on evolution history of sedimentary environment since Pliocene in R_1 core of Beibu Gulf. Mar. Geol. Quat. Geol. 1992, 4, 53–58. [Google Scholar] [CrossRef]
- Xu, D. Sedimentary Records Since the Last Deglaciation Period in the Eastern Beibu Gulf and the Formation of Modern Sedimentary Pattern; Graduate School of China Academy of Sciences (Institute of Oceanography): Beijing, China, 2014. [Google Scholar]
- Zhang, L.L.; Chen, M.H.; Chen, Z.; Xiang, R.; Liu, J.G. Distribution of calcium carbonate content in surface sediments of the South China Sea and its influencing factors. Geosci. J. China Geo Univ. 2010, 6, 891–898. [Google Scholar]
- Huang, E.Q.; Tian, J. Melting water events and abrupt climate change in the last deglaciation period. Sci. Bull. 2008, 12, 1437–1447. [Google Scholar]
- Zhao, H.T. Origin and time of Qiongzhou Strait. Mar. Geol. Quat. Geol. 2007, 27, 33–40. [Google Scholar]
- Yao, Y.; Harff, J.; Meyer, M.; Zhan, W. Reconstruction of paleocoastlines for the northwestern South China Sea since the Last Glacial Maximum. Sci. China Ser. D Earth Sci. 2009, 52, 1127–1136. [Google Scholar] [CrossRef]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- Huang, J.; Li, A.; Wan, S. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope. Quat. Res. 2011, 75, 734–744. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lu, H.; Gu, Z.; Rioual, P.; Hao, Q.; Mackay, A.W.; Jiang, W.; Cai, B.; Xu, B.; et al. The East Asian winter monsoon over the last 15,000 years: Its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quat. Sci. Rev. 2012, 32, 131–142. [Google Scholar] [CrossRef]
- Wang, P.X. Collected Papers on Marine Microorganisms and Paleontology; Ocean Press: Beijing, China, 1980. [Google Scholar]
- Li, G.Z.; Bian, Y.H.; Wang, P.X. Holocene transgressive strata and their microfossil characteristics in the northeast of Beibu Gulf. Trop. Ocean 1988, 2, 63–70. [Google Scholar]
- Yang, S.; Li, C.; Cai, J. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 229, 287–302. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Li, X.; Shao, L.; Liang, X. Climatic impact on Al, K, Sc and Ti in marine sediments: Evidence from ODP Site 1144, South China Sea. Geochem. J. 2003, 37, 593–602. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Li, X.; Chen, M.; Wei, W. High-resolution elemental records from the South China Sea and their paleoproductivity implications. Paleoceanography 2003, 18, 1054. [Google Scholar] [CrossRef]
- Murray, R.W.; Knowlton, C.; Leinen, M.; Mix, A.C.; Polsky, C.H. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope Stage 11. Glob. Planet. Chang. 2000, 24, 59–78. [Google Scholar] [CrossRef]
- Wan, S.; Toucanne, S.; Clift, P.D.; Zhao, D.; Bayon, G.; Yu, Z.; Cai, G.; Yin, X.; Révillon, S.; Wang, D.; et al. Human impact overwhelms long-term climate control of weathering and erosion in southwest China. Geology 2015, 43, 439–442. [Google Scholar] [CrossRef]
- Hu, D.; Clift, P.D.; Böning, P.; Hannigan, R.; Hillier, S.; Blusztajn, J.; Wan, S.; Fuller, D.Q. Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochem. Geophys. Geosyst. 2013, 14, 2349–2368. [Google Scholar] [CrossRef]
- Qiu, Y.; Peng, X.C.; Wang, Y.M.; Huang, W.K.; Du, W.B. Quaternary Erosion Process and Sedimentary Response in the Northern South China Sea; Geology Press: Beijing, China, 2017. [Google Scholar]
- Li, M.K. Evolution and Driving Mechanism of Paleoclimate and Environment since 36 Kyr BP in the Northwest South China Sea; University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, China Academy of Sciences): Beijing, China, 2018. [Google Scholar]
- Nesbitt, H.W.; Markovics, G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta 1997, 61, 1653–1670. [Google Scholar] [CrossRef]
- Li, X.H.; Wei, G.; Shao, L.; Liu, Y.; Liang, X.; Jian, Z.; Sun, M.; Wang, P. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia. Earth Planet. Sci. Lett. 2003, 211, 207–220. [Google Scholar] [CrossRef]
- Yang, S.; Jung, H.S.; Li, C. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments. Sediment. Geol. 2004, 164, 19–34. [Google Scholar] [CrossRef]
- Wei, G.; Li, X.H.; Liu, Y.; Shao, L.; Liang, X. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography 2006, 21, PA4214. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Setti, M.; López-Galindo, A.; Villa, I.M. Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem. Geol. 2014, 366, 61–74. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Li, X.H.; Shao, L.; Fang, D. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 212, 331–342. [Google Scholar] [CrossRef]
- Wang, X. Particle Size Characteristics and Geochemical Analysis of Surface Sediment on the Seabed of Panjin Port; Liaoning Normal University: Dalian, China, 2018. [Google Scholar]
- Kronberg, B.I.; Nesbitt, H.W.; Lam, W.W. Upper Pleistocene Amazon deep-sea fan muds reflect intense chemical weathering of their mountainous source lands. Chem. Geol. 1986, 54, 283–294. [Google Scholar] [CrossRef]
- West, A.J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 2012, 40, 811–814. [Google Scholar] [CrossRef]
- Catalan, J.; Pla-Rabés, S.; García, J.; Camarero, L. Air temperature-driven CO2 consumption by rock weathering at short timescales: Evidence from a Holocene lake sediment record. Geochim. Cosmochim. Acta 2014, 136, 67–79. [Google Scholar] [CrossRef]
- West, A.J.; Galy, A.; Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 2005, 235, 211–228. [Google Scholar] [CrossRef]
- Bühring, C.; Sarnthein, M.; Erlenkeuser, H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 m.y.: Site 1144, South China Sea. Proc. ODP Sci. Results 2014, 184, 1–29. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Shao, X.; Chen, S.; An, Z. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef]
- North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ding, Z. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem. Geophys. Geosyst. 2014, 15, 798–814. [Google Scholar] [CrossRef]
- National Earth System Science Data Sharing Service Platform. China Sci. Technol. Resour. Guide 2017, 49, 112. Available online: https://www.geodata.cn/ (accessed on 1 October 2023).
- Beck, J.W.; Zhou, W.; Li, C.; Wu, Z.; White, L.; Xian, F.; Kong, X.; An, Z. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 2018, 360, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Liew, P.M.; Zhao, M.; Chang, T.C.; Kuo, C.M.; Chen, M.T.; Wang, C.H.; Zheng, L.F. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years. Earth Planet. Sci. Lett. 1997, 146, 59–72. [Google Scholar] [CrossRef]
- Wang, L.; Sarnthein, M.; Erlenkeuser, H.; Grimalt, J.; Grootes, P.; Heilig, S.; Ivanova, E.; Kienast, M.; Pelejero, C.; Pflaumann, U. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea. Mar. Geol. 1999, 156, 245–284. [Google Scholar] [CrossRef]
- Mao, S.Y.; Zhu, X.W.; Wu, N.Y.; Sun, Y.G.; Guan, H.X. Records of Ice Melting Water and Climate Events Since the Last Glacial Maximum in the Northern South China Sea: Indications of Long Chain Fatty Alcohol Terrestrial Input. J. Trop. Oceanogr. 2015, 2, 52–65. [Google Scholar]
- Li, M.K.; Ouyang, T.P.; Zhu, Z.Y.; Tian, C.J.; Peng, S.S.; Qiu, Y.; Peng, X.C.; Zhong, H.X.; Chen, H.J. Magnetic records of the H1 event on the northwest slope of the South China Sea. Quat. Stud. 2019, 39, 927–937. [Google Scholar] [CrossRef]
- Yang, S.L.; Dong, X.X.; Xiao, J.L. History of East Asian Monsoon Changes Since the Last Glacial Maximum—Geological Records of Northern China. Chin. Sci. Earth Sci. 2019, 49, 1169–1181. [Google Scholar]
- Cheng, J. Research on the Phenomenon of “Overshoot” of Temperature and Salinity Circulation during Bølling-Allerød Warming Events; Nanjing University of Information Science and Technology: Nanjing, China, 2013. [Google Scholar]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Clow, G.D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. Ocean. 1997, 102, 26383–26396. [Google Scholar] [CrossRef]
- Alley, R.B. Ice-core evidence of abrupt climate changes. Proc. Natl. Acad. Sci. USA 2000, 97, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.F.; Francois, R.; Gherardi, J.M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.B.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Shen, J.; Wu, J.; Wang, Y. Paleovegetation and paleoclimate evolution of past 27.7 cal ka BP recorded by pollen and charcoal of lake Xingkai, Northeastern China. In Earth Surface Processes and Environmental Changes in East Asia; Kashiwaya, K., Shen, J., Kim, J., Eds.; Springer: Tokyo, Japan, 2015; pp. 81–94. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Wang, L.; Chu, G.Q.; Liu, J.Q. Vegetation and climate change during the last deglaciation in the Great Khingan Mountain, Northeastern China. PLoS ONE 2016, 11, e0146261. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y. Research on the Instability and Suitable Period of the Early Holocene Monsoon Climate Recorded by Chinese Stalagmites; Southwest University: Chongqing, China, 2019. [Google Scholar]
- O’Brien, S.R.; Mayewski, P.A.; Meeker, L.D.; Meese, D.A.; Twickler, M.S.; Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 1995, 270, 1962–1964. [Google Scholar] [CrossRef]
- Zhang, H.L.; Pu, X.Q. Stalagmite records of climate evolution and cold dry events in the Xundian area of Yunnan during the Middle Holocene. J. Earth Sci. 2011, 32, 95–100. [Google Scholar] [CrossRef]
- Sandweiss, D.H.; Maasch, K.A.; Anderson, D.G. Transitions in the mid-Holocene. Science 1999, 283, 499–500. [Google Scholar] [CrossRef]
- Spindler, K. The Man in the Ice: The Discovery of a 5000-Year-Old Body Reveals the Secrets of the Stone Age; Harmony Books: New York, NY, USA, 1994. [Google Scholar]
- Zhang, Z.K.; Wang, S.M.; Wu, R.J. Environmental Evolution and Southwest Monsoon Changes of Sedimentary Records of Erhai Lake in the Middle Holocene. Sci. Bull. 1998, 19, 2127–2128. [Google Scholar]
- Yang, H.R.; Xie, Z.R. Climate fluctuations and sea level fluctuations in eastern China over the past 20000 years. Ocean Lakes 1984, 1, 1–13. [Google Scholar]
- Huang, C.C.; Zhou, J.; Pang, J.; Han, Y.; Hou, C. A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China. Holocene 2000, 10, 135–142. [Google Scholar] [CrossRef]
- Zhu, K.Z. Preliminary Study on Climate Change in China over the Past 5000 Years. Meteorolog. Sci. Technol. Data 1973, S1, 2–23. [Google Scholar] [CrossRef]
- Moros, M.; Andrews, J.T.; Eberl, D.D.; Jansen, E. Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes. Paleoceanography 2006, 21, PA2017. [Google Scholar] [CrossRef]
- Bond, G.C.; Showers, W.; Elliot, M.; Evans, M.; Lotti, R.; Hajdas, I.; Johnson, S. The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. Geophys. Monogr. Am. Geophys. Union 1999, 112, 35–58. [Google Scholar] [CrossRef]
- Holzhauser, H.; Magny, M.; Zumbuühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 2005, 15, 789–801. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef]
Depth (cm) | Conventional Radiocarbon Age | Age Correction (95.4% Probability) | Calibrated Average Calendar Age |
---|---|---|---|
40 | 3850 ± 30 BP | (72.5%) 2456–2271 cal BC 4405–4220 cal BP | 4281 BP |
(22.9%) 2260–2204 cal BC 4209–4153 cal BP | |||
75 | 7880 ± 30 BP | (95.4%) 6368–6068 cal BC 8317–8017 cal BP | 8167 BP |
119 | 12,890 ± 40 BP | (95.4%) 12,891–12,299 cal BC 14,840–14,248 cal BP | 14,544 BP |
120 | 15,850 ± 50 BP | (95.4%) 16,648–16,180 cal BC 18,597–18,129 cal BP | 18,363 BP |
160 | 15,290 ± 50 BP | (53%) 16,545–16,354 cal BC 18,494–18,303 cal BP | 18,521 BP |
(42.4%) 16,803–16,649 cal BC 18,752–18,598 cal BP | |||
210 | 16,700 ± 50 BP | (95.4%) 17,542–17,047 cal BC 19,491–18,996 cal BP | 19,244 BP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Fan, T.; Wang, A.; Zeng, J.; Lv, Y.; Zhang, M.; Liu, D. The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years. J. Mar. Sci. Eng. 2024, 12, 615. https://doi.org/10.3390/jmse12040615
Li Y, Fan T, Wang A, Zeng J, Lv Y, Zhang M, Liu D. The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years. Journal of Marine Science and Engineering. 2024; 12(4):615. https://doi.org/10.3390/jmse12040615
Chicago/Turabian StyleLi, Yuchun, Tianlai Fan, Aihua Wang, Jun Zeng, Yubiao Lv, Mingwang Zhang, and Dajun Liu. 2024. "The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years" Journal of Marine Science and Engineering 12, no. 4: 615. https://doi.org/10.3390/jmse12040615
APA StyleLi, Y., Fan, T., Wang, A., Zeng, J., Lv, Y., Zhang, M., & Liu, D. (2024). The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years. Journal of Marine Science and Engineering, 12(4), 615. https://doi.org/10.3390/jmse12040615