Offshore Renewable Energy
1. Introduction
2. An Overview of the SI and Published Articles
3. Conclusions
Author Contributions
Conflicts of Interest
List of Contributions
- Ye, F.; Lian, J.; Xiao, T.; Xiong, D.; Wang, H.; Guo, Y.; Shao, N. Behavior Analysis of a Bucket Foundation with an Offshore Wind Turbine during the In-Water Sinking Process. J. Mar. Sci. Eng. 2024, 12, 494. https://doi.org/10.3390/jmse12030494.
- Wang, C.; Guo, L.; Chen, P.; Fu, Q.; Cui, L. Annular Electromagnetic Generator for Harvesting Ocean Wave Energy. J. Mar. Sci. Eng. 2023, 11, 2266. https://doi.org/10.3390/jmse11122266.
- Song, D.; Liu, R.; Zhang, Z.; Yang, D.; Wang, T. IRNLGD: An Edge Detection Algorithm with Comprehensive Gradient Directions for Tidal Stream Turbine. J. Mar. Sci. Eng. 2024, 12, 498. https://doi.org/10.3390/jmse12030498.
- Lu, B.; Liu, Y.; Zhai, X.; Zhang, L.; Chen, Y. Design and Experimental Study of 50 kW Ocean Thermal Energy Conversion Test Platform Based on Organic Rankine Cycle. J. Mar. Sci. Eng. 2024, 12, 463. https://doi.org/10.3390/jmse12030463.
- Xu, X.; Wang, D.; Zhou, X.; Tao, L. Suppression of Negative Sequence Current on HVDC Modular Multilevel Converters in Offshore Wind Power. J. Mar. Sci. Eng. 2024, 12, 383. https://doi.org/10.3390/jmse12030383.
- Chen, M.; Deng, J.; Yang, Y.; Zhou, H.; Tao, T.; Liu, S.; Sun, L.; Hua, L. Performance Analysis of a Floating Wind–Wave Power Generation Platform Based on the Frequency Domain Model. J. Mar. Sci. Eng. 2024, 12, 206. https://doi.org/10.3390/jmse12020206.
- Qin, J.; Zhang, Z.; Song, X.; Huang, S.; Liu, Y.; Xue, G. Design and Performance Evaluation of an Enclosed Inertial Wave Energy Converter with a Nonlinear Stiffness Mechanism. J. Mar. Sci. Eng. 2024, 12, 191. https://doi.org/10.3390/jmse12010191.
- Chen, M.; Jiang, J.; Zhang, W.; Li, C.B.; Zhou, H.; Jiang, Y.; Sun, X. Study on Mooring Design of 15 MW Floating Wind Turbines in South China Sea. J. Mar. Sci. Eng. 2024, 12, 33. https://doi.org/10.3390/jmse12010033.
- Wang, J.; Zhang, S.; Cheng, J.; Li, Y.; Shen, Y.; Wu, Z. Modeling and Simulation of a Turbine Access System with Three-Axial Active Motion Compensation. J. Mar. Sci. Eng. 2023, 11, 2237. https://doi.org/10.3390/jmse11122237.
- Yuan, J.; Liu, Z.; Geng, H.; Zhang, S.; Liang, L.; Zhao, P. Design Longitudinal Control System Using Suitable T-Foil Modeling for the Offshore Wind Power Operation and Maintenance Vessel with Severe Sea States. J. Mar. Sci. Eng. 2023, 11, 2182. https://doi.org/10.3390/jmse11112182.
- Zhao, D.; Li, S.; Shi, W.; Zhou, Z.; Guo, F. Design and Optimization of the Teardrop Buoy Driven by Ocean Thermal Energy. J. Mar. Sci. Eng. 2024, 12, 661. https://doi.org/10.3390/jmse12040661.
References
- Zhao, Y.; Yuan, H.; Zhang, Z.; Gao, Q. Performance analysis and multi-objective optimization of the offshore renewable energy powered integrated energy supply system. Energy Convers. Manag. 2024, 304, 118232. [Google Scholar] [CrossRef]
- Weiss, C.V.; Guanche, R.; Ondiviela, B.; Castellanos, O.F.; Juanes, J. Marine renewable energy potential: A global perspective for offshore wind and wave exploitation. Energy Convers. Manag. 2018, 177, 43–54. [Google Scholar] [CrossRef]
- Cullinane, M.; Judge, F.; O’Shea, M.; Thandayutham, K.; Murphy, J. Subsea superconductors: The future of offshore renewable energy transmission? Renew. Sustain. Energy Rev. 2022, 156, 111943. [Google Scholar] [CrossRef]
- Konispoliatis, D.N.; Katsaounis, G.M.; Manolas, D.I.; Soukissian, T.H.; Polyzos, S.; Mazarakos, T.P.; Voutsinas, S.G.; Mavrakos, S.A. REFOS: A renewable energy multi-purpose floating offshore system. Energies 2021, 14, 3126. [Google Scholar] [CrossRef]
- Raileanu, A.; Onea, F.; Rusu, E. An overview of the expected shoreline impact of the marine energy farms operating in different coastal environments. J. Mar. Sci. Eng. 2020, 8, 228. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. Wind power production from very large offshore wind farms. Joule 2021, 5, 2663–2686. [Google Scholar] [CrossRef]
- Wan, L.; Moan, T.; Gao, Z.; Shi, W. A review on the technical development of combined wind and wave energy conversion systems. Energy 2024, 294, 130885. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W. Tidal current energy harvesting technologies: A review of current status and life cycle assessment. Renew. Sustain. Energy Rev. 2023, 179, 113269. [Google Scholar] [CrossRef]
- Wang, G.; Chao, Y.; Chen, Z. Facilitating developments of solar photovoltaic power and offshore wind power to achieve carbon neutralization: An evolutionary game theoretic study. Environ. Sci. Pollut. Res. 2023, 30, 45936–45950. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.; Fu, Q.; Cui, L.; Liu, R.; Guo, B. Offshore Renewable Energy. J. Mar. Sci. Eng. 2024, 12, 749. https://doi.org/10.3390/jmse12050749
Lian J, Fu Q, Cui L, Liu R, Guo B. Offshore Renewable Energy. Journal of Marine Science and Engineering. 2024; 12(5):749. https://doi.org/10.3390/jmse12050749
Chicago/Turabian StyleLian, Jijian, Qiang Fu, Lin Cui, Run Liu, and Bingyong Guo. 2024. "Offshore Renewable Energy" Journal of Marine Science and Engineering 12, no. 5: 749. https://doi.org/10.3390/jmse12050749
APA StyleLian, J., Fu, Q., Cui, L., Liu, R., & Guo, B. (2024). Offshore Renewable Energy. Journal of Marine Science and Engineering, 12(5), 749. https://doi.org/10.3390/jmse12050749