Maritime Autonomous Surface Ships
Author Contributions
Funding
Conflicts of Interest
References
- Madusanka, N.S.; Fan, Y.; Yang, S.; Xiang, X. Digital Twin in the Maritime Domain: A Review and Emerging Trends. J. Mar. Sci. Eng. 2023, 11, 1021. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Wang, X.; Wang, Q. A Novel, Finite-Time, Active Fault-Tolerant Control Framework for Autonomous Surface Vehicle with Guaranteed Performance. J. Mar. Sci. Eng. 2024, 12, 347. [Google Scholar] [CrossRef]
- Wang, J.; Shan, Q.; Li, T.; Xiao, G.; Xu, Q. Collision-Free Formation-Containment Tracking of Multi-USV Systems with Constrained Velocity and Driving Force. J. Mar. Sci. Eng. 2024, 12, 304. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Ning, J.; Li, Z. Formation Control for UAV-USVs Heterogeneous System with Collision Avoidance Performance. J. Mar. Sci. Eng. 2023, 11, 2332. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, D.; Wang, Y.; Zong, Z.; Wu, Z. Model Experimental Study on a T-Foil Control Method with Anti-Vertical Motion Optimization of the Mono Hull. J. Mar. Sci. Eng. 2023, 11, 1551. [Google Scholar] [CrossRef]
- Niu, Y.; Zhu, F.; Wei, M.; Du, Y.; Zhai, P. A Multi-Ship Collision Avoidance Algorithm Using Data-Driven Multi-Agent Deep Reinforcement Learning. J. Mar. Sci. Eng. 2023, 11, 2101. [Google Scholar] [CrossRef]
- Hwang, T.; Youn, I.-H. Development of a Graph-Based Collision Risk Situation Model for Validation of Autonomous Ships’ Collision Avoidance Systems. J. Mar. Sci. Eng. 2023, 11, 2037. [Google Scholar] [CrossRef]
- Yasir, M.; Niang, A.J.; Hossain, M.S.; Islam, Q.U.; Yang, Q.; Yin, Y. Ranking Ship Detection Methods Using SAR Images Based on Machine Learning and Artificial Intelligence. J. Mar. Sci. Eng. 2023, 11, 1916. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, Y.; Yang, X.; Wang, H. Attitude Estimation Method for Target Ships Based on LiDAR Point Clouds via An Improved RANSAC. J. Mar. Sci. Eng. 2023, 11, 1755. [Google Scholar] [CrossRef]
- Xu, H.; Guedes Soares, C. Data-Driven Parameter Estimation of Nonlinear Ship Manoeuvring Model in Shallow Water Using Truncated Least Squares Support Vector Machines. J. Mar. Sci. Eng. 2023, 11, 1865. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Moreira, L.; Xiang, X.; Guedes Soares, C. Maritime Autonomous Surface Ships. J. Mar. Sci. Eng. 2024, 12, 957. https://doi.org/10.3390/jmse12060957
Xu H, Moreira L, Xiang X, Guedes Soares C. Maritime Autonomous Surface Ships. Journal of Marine Science and Engineering. 2024; 12(6):957. https://doi.org/10.3390/jmse12060957
Chicago/Turabian StyleXu, Haitong, Lúcia Moreira, Xianbo Xiang, and C. Guedes Soares. 2024. "Maritime Autonomous Surface Ships" Journal of Marine Science and Engineering 12, no. 6: 957. https://doi.org/10.3390/jmse12060957
APA StyleXu, H., Moreira, L., Xiang, X., & Guedes Soares, C. (2024). Maritime Autonomous Surface Ships. Journal of Marine Science and Engineering, 12(6), 957. https://doi.org/10.3390/jmse12060957