Effect of Licorice on Gene Expression Related to the Growth of Asian Seabass Lates calcarifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Formulation and Experimental Design
2.2. Experimental Method
2.3. Experiment Sampling
2.4. RNA Extraction
2.5. qrtPCR Experiment
2.6. Calculation and Statistical Analysis
3. Results
3.1. Effects of Licorice in Feed on the Growth Performance of Asian Seabass
3.2. Effects of Licorice on the Expression of Growth-Related Genes in the Asian Seabass Liver
3.3. Effects of Licorice on Level of Muscle Growth-Related Genes in Asian Seabass
3.4. Effects of Licorice on Level of Growth-Related Genes in Brain Tissue of Asian Seabass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nandakumar, S.; Ambasankar, K.; Ali, S.S.R.; Syamadayal, J.; Vasagam, K. Replacement of fish meal with corn gluten meal in feeds for Asian seabass (Lates calcarifer). Aquac. Int. 2017, 25, 1495–1505. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, J.; Ma, Z.; Yu, G.; Yang, R.; Wang, L. Path analysis and growth curve fitting of morphological traits to body weight of juvenile Lates calcarifer. J. South. Agric. 2017, 48, 1700–1707. [Google Scholar]
- Li, Z.; Yuan, F.; Lin, H.; Lu, X.; Yang, Q. Efects ofBacilhs lichen ifom is suppement on grwoth perform anceand digestive enzymes activities of the sea bass, Lates calcarifer. J. Oceanogr. Taiwan Strait 2011, 30, 43–48. [Google Scholar]
- Lin, H.; Yuan, F.; Li, Z.; Lu, X. Effects of dietary photosyn thetic bacteria PS2 on growth performance, digestive enzymes and nonspecific immune enzymes. South China Fish. Sci. 2013, 6, 25–29. [Google Scholar]
- Al-Khamees, A.M.A.S.M.E.-B.S. Influence of Dietary Garlic (Allium sativum) and/orAscorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass (Lates calcarifer). Animals 2020, 10, 2396. [Google Scholar]
- Chinnasamy, C.D.A. Dietary administration of natural immunostimulants on growth performance, haematological, biochemical parameters and disease resistance of Asian Sea bass Lates calcarifer (Bloch, 1790). Aquac. Res. 2017, 48, 1131–1145. [Google Scholar]
- Talpur, A.D. Mentha piperita (Peppermint) as feed additive enhanced growth performance, survival, immune response and disease resistance of Asian seabass, Lates calcarifer (Bloch) against Vibrio harveyi infection. Aquaculture 2014, 420–421, 71–78. [Google Scholar] [CrossRef]
- Razak, R.A.; Shariff, M.; Md Yusoff, F.; Safinar, I. Enhanced growth performance, haemato-biochemical and immune parameters of asian seabass, lates calcarifer (bloch, 1790) fed dietary supplementation with polygonum chinense. Asian Fish. Sci. 2019, 32, 19–28. [Google Scholar] [CrossRef]
- Lu, X.; Lin, H.; Li, Z. Effect of dietary Chinese herbalm edicines on hematological and blood biochemical indices incultured seabass Lates calarifer. J. Dalian Fish. Univ. 2009, 24, 279–282. [Google Scholar]
- Zhou, H.; Zhou, H.Q. Effects of Chinese herbal medicine on growth and immune function of Litopenaeus vannamei. J. Hebei Fish. 2008, 9, 44–48. [Google Scholar]
- Shi, H.; Lou, B.; Hu, Z. Effects of Chinese herbal feed additives on growth and non-specific immunity of juvenile Bream (Pagrosomus major). Prog. Mod. Biomed. 2007, 7, 548–556. [Google Scholar]
- Jin, E.; Xiong, X.; Su, Y. Effects of compound Chinese herbal preparation on immune function, antioxidant function and proliferative and apoptotic gene expression of bursa of Fabricius in green foot chicken. J. Northeast Agric. Univ. 2019, 50, 66–77. [Google Scholar]
- Wang, Q.e.; Ren, H.; Zeng, X. Research and Utilization Statue of Licorice. Chin. Agric. Sci. Bull. 2011, 27, 290–295. [Google Scholar]
- Zhao, S.; Nong, Z.; Zhong, Z. Experimental study on antitumor effect of the total flavonoids from radix glyeyrrhizae and its mechanisms. Guangxi Med. J. 2006, 28, 1496–1499. [Google Scholar]
- Zhang, F.; Shen, Y. Advances in studies on cardioprotection of glycyrrhizie acid compound and flavonoids. Drugs Clinie 2012, 27, 429–434. [Google Scholar]
- Wang, F.; Su, Y. Pharmacological action and clinical application of licorice. Lishizhen Med. Mater. Medica Res. 2002, 13, 303–304. [Google Scholar]
- Zhu, Y.; Su, Y.; Chen, J. Inhibition of flavone from Glycyrrhiza uralensis on capsaicin-induced cough reflex in guinea pig. Chin. Tradit. HerbalDrugs 2006, 37, 1048–1051. [Google Scholar]
- Zhang, F.; Shen, Y. Advances in studies on glyeyrrhizic acid and its derivatives in anti-inflammationand anti-allergy. Drugs Climie 2011, 26, 359–364. [Google Scholar]
- Huang, Q.; Ma, Z. Pharmacological research progress of glyeyrrhizie acid. Drug Eval. Res. 2011, 34, 384–387. [Google Scholar]
- Liu, Q. Summary of chemical composition and pharmacological action of licorice. Chin. Med. Mod. Distance Educ. China 2011, 9, 84. [Google Scholar]
- Xie, H.; Du, X.; Yu, D. Research Progress in Pharmacological Effects of Glycyrrhiza Polysaccharide. Chin. J. Vet. Drug 2011, 30, 285. [Google Scholar]
- Hu, J.; Ao, M.; Cui, Y. Anti-tumor Effect of Polysaccharide from Glycyrrhizaand Its Influence on immunological Function. Nat. Prod. Res. Dev. 2008, 20, 911–913, 938. [Google Scholar]
- Zhu, L.; Liu, X.; Yin, S.; Wang, Q.; Ni, C.; Yang, F. Effects of Chinese herbal medicine on growth performance and antioxidant indexes of tilapia. China Feed 2014, 23, 38–41. [Google Scholar]
- Tan, J.; Deng, F.; Cao, Y.; Yao, Y. Effects of Chinese herbal compound in feed on growth, musclecomposition and immune-related enzyme activities of juvenile grass carp (Ctenopharyngodon idellus). Guangdong Agric. Sci. 2015, 10, 109–113. [Google Scholar]
- Wang, B.; Fang, P.; Lin, X. Effect of Liquorice Extracts on the Resistance of Carassius auratus to Stress and Pathogen Infection. Freshw. Fish. 2007, 37, 3–6. [Google Scholar]
- Weng, Q.; Li, Z.; Lu, K. Effect of different levels of fermented licorice on the blood index and antioxidant ability of grouper under nitrite stress. Feed Res. 2019, 5, 24–27. [Google Scholar]
- Chen, C.R.; Chen, X.H.; Chen, C.F. Effect of oral glycyrrhizin on anti-Aeromonas hydrophila infection of juvenile soft-shelled turtle, Trionyx sinensis. J. Huazhong Agric. Unversity 2000, 19, 577–580. [Google Scholar]
- Adineh, H.; Naderi, M.; Yousefi, M.; Hamidi, M.K.; Ahmadifar, E.; Hoseini, S.M. Dietary licorice (Glycyrrhiza glabra) improves growth, lipid metabolism, antioxidant and immune responses, and resistance to crowding stress in common carp, Cyprinus carpio. Aquac. Nutri. 2021; 27, 417–426. [Google Scholar] [CrossRef]
- Meng, X.; You, F.; Cao, H. Effects of dietary licorice (Glycyrrhiza uralensis) supplementation on growth performance, muscle quality, and immunity in the common carp (Cyprinus carpio haematopterus). Aquac. Rep. 2022, 27, 101331. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; El-Araby, D.A. Immune and antioxidative effects of dietary licorice (Glycyrrhiza glabra L.) on performance of Nile tilapia, Oreochromis niloticus (L.) and it susceptibility to Aeromonas hydrophila infection. Aquaculture 2021, 530, 735828. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, L.; Peng, X.; Zhao, M.; Lan, Y.; Tang, X. Study on growth and fatty liver repair of Acipenser sinensis by licorice and salvia miltiorrhiza. Chin. Fish. Qual. Stand. 2014, 4, 46–53. [Google Scholar]
- Yang, R.; Han, M.; Fu, Z.; Wang, Y.; Zhao, W.; Yu, G.; Ma, Z. Immune Responses of Asian Seabass Lates calcariferto Dietary Glycyrrhiza uralensis. Animals 2020, 10, 1629. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yu, G.; Meng, X. Culture Biology and Processing of Barramundi (Lates calcarifer); China Agriculture Press: Beijing, China, 2019. [Google Scholar]
- Fu, Z.; Yang, R.; Chen, X. Dietary non-protein energy source regulates antioxidant status and immune response of barramundi (Lates calcarifer). Fish Shellfish Immunol. 2019, 95, 697–704. [Google Scholar] [CrossRef]
- Picha, M.E.; Turano, M.J.; Beckman, B.R.; Borski, R.J. Endocrine Biomarkers of Growth and Applications to Aquaculture: A Minireview of Growth Hormone, Insulin-like Growth Factor (igf)-i, and Igf-binding Proteins as Potential Growth Indicators in Fish. N. Am. J. Aquac. 2008, 70, 196–211. [Google Scholar] [CrossRef]
- Rolland, M.; Dalsgaard, J.; Holm, J.; Gómez-Requeni, P.; Skov, P.V. Dietary Methionine Level Affects Growth Performance and Hepatic Gene Expression of Gh–igf System and Protein Turnover Regulators in Rainbow Trout (oncorhynchus Mykiss) Fed Plant Protein-based Diets. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 181, 33–41. [Google Scholar] [CrossRef]
- Wan, Z. Studies on Juvenile Development and Digestive Physiology of Takifugu rufifin. Master’s Thesis, Ocean University of China, Qingdao, China, 2005. [Google Scholar]
- Figueiredo, M.; Lanes, C.; Almeida, D. The Effect of Gh Overexpression on Ghr and Igf-i Gene Regulation in Different Genotypes of Gh-transgenic Zebrafish. Comp. Biochem. Physiol. Part D Genom. Proteom. 2007, 2, 228–233. [Google Scholar]
- Ma, X.; Zhang, Y.; Huang, W. cDNAs cloning of growth hormone, growth hormone receptor and the different expression between male and female Nile tilapia (Oreochromis niloticus). Curr. Zool. 2006, 52, 924–933. [Google Scholar]
- Santis, C.; Gomes, G.; Jerry, D. Abundance of Myostatin Gene Transcripts and Their Correlation with Muscle Hypertrophy During the Development of Barramundi, Lates Calcarifer. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 163, 101–107. [Google Scholar] [CrossRef]
- Johnston, I. Muscle Development and Growth: Potential Implications for Flesh Quality in Fish. Aquaculture 1999, 177, 99–115. [Google Scholar] [CrossRef]
- Gabillard, J.; Montserrat, B. Coordinated Regulation of the Gh/igf System Genes During Refeeding in Rainbow Trout (oncorhynchus Mykiss). J. Endocrinol. 2006, 191, 15–24. [Google Scholar] [CrossRef]
- Nam, B.; Moon, J.; Kim, Y. Molecular and Functional Analyses of Growth Hormone-releasing Hormone (ghrh) from Olive Flounder (paralichthys Olivaceus). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Canosa, L.; Chang, J.; Peter, R. Neuroendocrine Control of Growth Hormone in Fish. Gen. Comp. Endocrinol. 2007, 151, 1–26. [Google Scholar] [CrossRef]
- Danhui, W.; Youbing, Y.; Ying, L. Effect of Glycyrrhiza polysaccharide in diets on growth performance, body size index and IGF-1 gene relative expression in broilers. Mod. J. Anim. Husb. Vet. Med. 2021, 12, 28–31. [Google Scholar]
- Wenbin, C.; Xueying, W.; Cai, Z. Effect of Glycyrrhiza polysaccharide on growth performance and immunologic function of broilers. Feed Res. 2022, 18, 34–40. [Google Scholar]
- Chen, W. Effects of Glycyrrhiza polysaccharides on Growth Performance, Immune Function and Intestinal Health of Broilers. Master’s Thesis, Henan University of Science and Technology, Zhengzhou, China, 2022. [Google Scholar]
- Youbing, Y.; Xinyue, L.; Ran, L. Effects of Glycyrrhiza polysaccharides on Growth Performance and Growth Gene Expression in Weaned Piglets. Jiangsu Agric. Sci. 2023, 13, 182–189. [Google Scholar]
- Lou, R. Effects of Glycyrrhiza polysaccharides on Growth Performance and Expression of PRRSV-Related Genes in Piglets. Master’s Thesis, Henan University of Science and Technology, Zhengzhou, China, 2021. [Google Scholar]
- Li, J. Effects of glycyrrhiza polysaccharides on Growth Performance and Intestinal Health of Weaned Piglets. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2022. [Google Scholar]
- Jianfang, L.; Rudu, W.; Pengli, Z. Effects of Glycyrrhiza polysaccharides on growth performance, blood routine, serum biochemical indexes and antioxidant properties of weaned piglets. Feed. Ind. 2022, 43, 32–37. [Google Scholar]
Ingredients | Diets | |||
---|---|---|---|---|
Control Group (0% G.) | Test Group (1% G.) | Test Group (3% G.) | Test Group (5% G.) | |
Fish meal (Fm) | 50 | 50 | 50 | 50 |
Wheat flour (Wf) | 23 | 22 | 20 | 18 |
Soybean meal (Sm) | 12.9 | 12.9 | 12.9 | 12.9 |
Vitamin premix (Vp) (1) | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral premix (Mp) (2) | 0.5 | 0.5 | 0.5 | 0.5 |
Fish oil (Fo) | 13 | 13 | 13 | 13 |
Glycyrrhiza meal (G. m) | 0 | 1 | 3 | 5 |
Choline chloride (Cc) | 0.1 | 0.1 | 0.1 | 0.1 |
Dry ingredients (%) | ||||
Crude protein (Cp) | 41.44 | 41.31 | 41.06 | 40.81 |
Crude lipid (Cl) | 17.53 | 17.51 | 17.46 | 17.41 |
Crude ash (Ca) | 9.26 | 9.22 | 9.13 | 9.05 |
Total energy (Te) | 20.28 | 20.12 | 19.79 | 19.46 |
Gene Classification | Gene | Sample | Sequence (5′-3′) | Amplicon Size (bp) | Accession No. |
---|---|---|---|---|---|
Growth-related gene | GHRH | brain | F: GCGTGTTGTTGCACAGGCC | 121 | XM018681526 |
R: CTACAGGCCGGTGTTGTTTA | |||||
GH | F: AGGTGTTGTTGACAGGCAC | 86 | X59378 | ||
R: AACTCCCAGGTGTTGTTCAA | |||||
GHR | liver | F: AAGGTGTTGTTAACAGGCAGC | 206 | XM_018702498 | |
R: GCACGTGTTGTTGACAGGCGC | |||||
IGF1 | F: TGACAGGCGGTGTGTTGTTCT | 144 | EU136176 | ||
R: TGGTGTTGTTTACTAACCT | |||||
IGF2 | F: AGACAGGCAAGTGTTGTTGTG | 131 | XM_018664155 | ||
R: GAAGATAACCTGCTCCTGTG | |||||
IGF2R | muscle | F: AGCTGGAAACCCCGAATT | 150 | XM_018687313.1 | |
R: GAGCGAGACAGGCTGGATA | |||||
MSTN1 | F: AACTGCGAATGAAAGAAGCTC | 204 | XM_018696695 | ||
R: CTTGGACGATGGACTCAGGT | |||||
MSTN2 | F: GTCTGTTCAGCCTCAGTCCA | 145 | XM_018661271 | ||
R: CGGGTGTTGTTTCCCTCTTT | |||||
R: GACGTCCAATGGGCTTTCT | |||||
R: CAAACAGGGTGATGGGGTA | |||||
β-actin | F: AACCAAACGCCCAACAACT | 112 | XM_018667666 | ||
R: ATAACTGAAGCCATGCCAATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Zhao, W.; Wang, Y.; Fu, Z.; Hu, J.; Zhou, S.; Li, M.; Ma, Z. Effect of Licorice on Gene Expression Related to the Growth of Asian Seabass Lates calcarifer. J. Mar. Sci. Eng. 2024, 12, 1036. https://doi.org/10.3390/jmse12071036
Yang R, Zhao W, Wang Y, Fu Z, Hu J, Zhou S, Li M, Ma Z. Effect of Licorice on Gene Expression Related to the Growth of Asian Seabass Lates calcarifer. Journal of Marine Science and Engineering. 2024; 12(7):1036. https://doi.org/10.3390/jmse12071036
Chicago/Turabian StyleYang, Rui, Wang Zhao, Yifu Wang, Zhengyi Fu, Jing Hu, Shengjie Zhou, Minghao Li, and Zhenhua Ma. 2024. "Effect of Licorice on Gene Expression Related to the Growth of Asian Seabass Lates calcarifer" Journal of Marine Science and Engineering 12, no. 7: 1036. https://doi.org/10.3390/jmse12071036
APA StyleYang, R., Zhao, W., Wang, Y., Fu, Z., Hu, J., Zhou, S., Li, M., & Ma, Z. (2024). Effect of Licorice on Gene Expression Related to the Growth of Asian Seabass Lates calcarifer. Journal of Marine Science and Engineering, 12(7), 1036. https://doi.org/10.3390/jmse12071036