Pulsatile Ventilation Flow in Polychaete Alitta succinea Burrows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polychaetes
2.2. Mud Analog
2.3. Experimental Setup
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Welsh, D.T. It’s a Dirty Job but Someone Has to Do It: The Role of Marine Benthic Macrofauna in Organic Matter Turnover and Nutrient Recycling to the Water Column. Chem. Ecol. 2003, 19, 321–342. [Google Scholar] [CrossRef]
- Kristensen, E. Organic Matter Diagenesis at the Oxic/Anoxic Interface in Coastal Marine Sediments, with Emphasis on the Role of Burrowing Animals. Hydrobiologia 2000, 426, 1–24. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Vedel, A.; Boye, H.; Larsen, P.S. Filter-Net Structure and Pumping Activity in the Polychaete Nereis Diversicolor: Effects of Temperature and Pump-Modelling. Mar. Ecol. Prog. Ser. 1992, 83, 79–89. [Google Scholar] [CrossRef]
- Riisgaard, H.U.; Larsen, P.S. Filter-Feeding in Marine Macro-Invertebrates: Pump Characteristics, Modelling and Energy Cost. Biol. Rev. 1995, 70, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Riisgård, H. Properties and Energy Cost of the Muscular Piston Pump in the Suspension Feeding Polychaete Chaetopterus variopedatus. Mar. Ecol. Prog. Ser. 1989, 56, 157–168. [Google Scholar] [CrossRef]
- Jørgensen, C.B.; Famme, P.; Kristensen, H.S.; Larsen, P.S.; Møhlenberg, F.; Riisgård, H. The Bivalve Pump. Mar. Ecol. Prog. Ser. 1986, 34, 69–77. [Google Scholar] [CrossRef]
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.O.; Banta, G.T. What Is Bioturbation? The Need for a Precise Definition for Fauna in Aquatic Sciences. Mar. Ecol. Prog. Ser. 2012, 446, 285–302. [Google Scholar] [CrossRef]
- Boyle, R.; Dahl, T.W.; Dale, A.W.; Shields-Zhou, G.; Zhu, M.; Brasier, M.; Canfield, D.E.; Lenton, T.M. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nat. Geosci. 2014, 7, 671–676. [Google Scholar] [CrossRef]
- Byers, J.E.; Grabowski, J.H. Soft-Sediment Communities. In Marine Community Ecology and Conservation; Sinauer Associates, Inc.: Sunderland, MA, USA, 2014; pp. 227–249. [Google Scholar]
- Besterman, A.F.; McGlathery, K.J.; Reidenbach, M.A.; Wiberg, P.L.; Pace, M.L. Predicting Benthic Macroalgal Abundance in Shallow Coastal Lagoons from Geomorphology and Hydrologic Flow Patterns. Limnol. Oceanogr. 2021, 66, 123–140. [Google Scholar] [CrossRef]
- Volaric, M.; Berg, P.; Reidenbach, M. An Invasive Macroalga Alters Ecosystem Metabolism and Hydrodynamics on a Tidal Flat. Mar. Ecol. Prog. Ser. 2019, 628, 1–16. [Google Scholar] [CrossRef]
- Vogel, S. Living in a Physical World X. Pumping Fluids through Conduits. J. Biosci. 2007, 32, 207–222. [Google Scholar] [CrossRef]
- Hennig, G.; Costa, M.; Chen, B.; Brookes, S. Quantitative Analysis of Peristalsis in the Guinea-Pig Small Intestine Using Spatio-Temporal Maps. J. Physiol. 1999, 517, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Waldrop, L.; Miller, L. Large-Amplitude, Short-Wave Peristalsis and Its Implications for Transport. Biomech. Model. Mechanobiol. 2016, 15, 629–642. [Google Scholar] [CrossRef]
- Larsen, P.S.; Riisgåd, H.U. The Sponge Pump. J. Theor. Biol. 1994, 168, 53–63. [Google Scholar] [CrossRef]
- Jørgensen, C.B.; Larsen, P.S.; Møhlenberg, F.; Riisgård, H.U. The Mussel Pump: Properties and Modelling. Mar. Ecol. Prog. Ser. 1988, 45, 205–216. [Google Scholar] [CrossRef]
- Stamhuis, E.J.; Videler, J.J. Burrow Ventilation in the Tube-Dwelling Shrimp Callianassa subterranea (Decapoda: Thalassinidea): II. The Flow in the Vicinity of the Shrimp and the Energetic Advantages of a Laminar Non-Pulsating Ventilation Current. J. Exp. Biol. 1998, 201, 2159–2170. [Google Scholar] [CrossRef]
- Quintana, C.O.; Hansen, T.; Delefosse, M.; Banta, G.; Kristensen, E. Burrow Ventilation and Associated Porewater Irrigation by the Polychaete Marenzelleria viridis. J. Exp. Mar. Biol. Ecol. 2011, 397, 179–187. [Google Scholar] [CrossRef]
- Hollertz, K. Feeding Biology and Carbon Budget of the Sediment-Burrowing Heart Urchin Brissopsis lyrifera (Echinoidea: Spatangoida). Mar. Biol. 2002, 140, 959–969. [Google Scholar] [CrossRef]
- Vopel, K.; Thistle, D.; Rosenberg, R. Effect of the Brittle Star Amphiura filiformis (Amphiuridae, Echinodermata) on Oxygen Flux into the Sediment. Limnol. Oceanogr. 2003, 48, 2034–2045. [Google Scholar] [CrossRef]
- Kristensen, E. Oxygen and Carbon Dioxide Exchange in the Polychaete Nereis virens: Influence of Ventilation Activity and Starvation. Mar. Biol. 1989, 101, 381–388. [Google Scholar] [CrossRef]
- Riisgård, H.; Berntsen, I.; Tarp, B. The Lugworm (Arenicola marina) Pump: Characteristics, Modelling and Energy Cost. Mar. Ecol. Prog. Ser. 1996, 138, 149–156. [Google Scholar] [CrossRef]
- Riisgård, H.; Ivarsson, N. The Crown-Filament Pump of the Suspension-Feeding Polychaete Sabella penicillus: Filtration, Effects of Temperature, and Energy Cost. Mar. Ecol. Prog. Ser. 1990, 62, 249–257. [Google Scholar] [CrossRef]
- Wiesebron, L.E.; Steiner, N.; Morys, C.; Ysebaert, T.; Bouma, T.J. Sediment Bulk Density Effects on Benthic Macrofauna Burrowing and Bioturbation Behavior. Front. Mar. Sci. 2021, 8, 707785. [Google Scholar] [CrossRef]
- Murphy, E.A.K.; Reidenbach, M.A. Oxygen Transport in Periodically Ventilated Polychaete Burrows. Mar. Biol. 2016, 163, 208. [Google Scholar] [CrossRef]
- Volkenborn, N.; Meile, C.; Polerecky, L.; Pilditch, C.; Norkko, A.; Norkko, J.; Hewitt, J.; Thrush, S.; Wethey, D.; Woodin, S. Intermittent Bioirrigation and Oxygen Dynamics in Permeable Sediments: An Experimental and Modeling Study of Three Tellinid Bivalves. J. Mar. Res. 2012, 70, 794–823. [Google Scholar] [CrossRef]
- Kristensen, E. Ventilation and Oxygen Uptake by Three Species of Nereis (Annelida: Polychaeta). I. Effects of Hypoxia. Mar. Ecol. Prog. Ser. 1983, 12, 289–297. [Google Scholar] [CrossRef]
- Jumars, P.A. Boundary-Trapped, Inhalant Siphon and Drain Flows: Pipe Entry Revisited Numerically. Limnol. Oceanogr. Fluids Environ. 2013, 3, 21–39. [Google Scholar] [CrossRef]
- Hogan, S.; Reidenbach, M.A. Quantifying Tradeoffs in Ecosystem Services Under Various Oyster Reef Restoration Designs. Estuaries Coasts 2022, 45, 677–690. [Google Scholar] [CrossRef]
- Hogan, S. Influence of Oyster Reefs on Infauna and Sediment Spatial Distributions within Intertidal Mudflats. Mar. Ecol. Prog. Ser. 2022, 686, 91–106. [Google Scholar] [CrossRef]
- Jumars, P.A.; Dorgan, K.M.; Lindsay, S.M. Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Annu. Rev. Mar. Sci. 2015, 7, 497–520. [Google Scholar] [CrossRef] [PubMed]
- Neuhoff, H.-G. Influence of Temperature and Salinity on Food Conversion and Growth of Different Nereis Species (Polychaeta, Annelida). Mar. Ecol. Prog. Ser. 1979, 1, 255–262. [Google Scholar] [CrossRef]
- Freel, R.W.; Medler, S.G.; Clark, M.E. Solute Adjustments in the Coelomic Fluid and Muscle Fibers of a Euryhaline Polychaete, Neanthes Succinea, Adapted to Various Salinities. Biol. Bull. 1973, 144, 289–303. [Google Scholar] [CrossRef]
- Kristensen, E. Ventilation and Oxygen Uptake by Three Species of Nereis (Annelida: Polychaeta). II. Effects of Temperature and Salinity Changes. Mar. Ecol. Prog. Ser. 1983, 12, 299–306. [Google Scholar] [CrossRef]
- McGlathery, K.J.; Christian, R.R. Water Quality Sampling—Integrated Measurements for the Virginia Coast, 1992–2023. Available online: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-vcr.247.18 (accessed on 30 April 2024).
- Dorgan, K.M.; Jumars, P.A.; Johnson, B.; Boudreau, B.P.; Landis, E. Burrow Extension by Crack Propagation. Nature 2005, 433, 475. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.A.K.; Dorgan, K.M. Burrow Extension with a Proboscis: Mechanics of Burrowing by the Glycerid Hemipodus simplex. J. Exp. Biol. 2011, 214, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Byron, M.L.; Variano, E.A. Refractive-Index-Matched Hydrogel Materials for Measuring Flow-Structure Interactions. Exp. Fluids 2013, 54, 1456. [Google Scholar] [CrossRef]
- Normand, V.; Lootens, D.; Amici, E.; Plucknett, K.; Aymard, P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules 2000, 1, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Dorgan, K.M. Kinematics of Burrowing by Peristalsis in Granular Sands. J. Exp. Biol. 2018, 221, jeb167759. [Google Scholar] [CrossRef] [PubMed]
- Downie, H.; Holden, N.; Otten, W.; Spiers, A.J.; Valentine, T.A.; Dupuy, L.X. Transparent Soil for Imaging the Rhizosphere. PLoS ONE 2012, 7, e44276. [Google Scholar] [CrossRef] [PubMed]
- Leis, A.P.; Schlicher, S.; Franke, H.; Strathmann, M. Optically Transparent Porous Medium for Nondestructive Studies of Microbial Biofilm Architecture and Transport Dynamics. Appl. Environ. Microbiol. 2005, 71, 4801–4808. [Google Scholar] [CrossRef] [PubMed]
- Meijering, E.; Dzyubachyk, O.; Smal, I. Chapter Nine—Methods for Cell and Particle Tracking. In Methods in Enzymology; Conn, P.M., Ed.; Imaging and Spectroscopic Analysis of Living Cells; Academic Press: Cambridge, MA, USA, 2012; Volume 504, pp. 183–200. [Google Scholar]
- Vogel, S. Life in Moving Fluids: The Physical Biology of Flow—Revised and Expanded, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 978-0-691-21297-5. [Google Scholar]
- Bartoli, M.; Nizzoli, D.; Welsh, D.T.; Viaroli, P. Short-Term Influence of Recolonisation by the Polycheate Worm Nereis Succinea on Oxygen and Nitrogen Fluxes and Denitrification: A Microcosm Simulation. Hydrobiologia 2000, 431, 165–174. [Google Scholar] [CrossRef]
- Swan, B.; Watts, J.; Reifel, K.; Hurlbert, S. Role of the Polychaete Neanthes succinea in Phosphorus Regeneration from Sediments in the Salton Sea, California. Hydrobiologia 2007, 576, 111–125. [Google Scholar] [CrossRef]
- Kristensen, E. Direct Measurement of Ventilation and Oxygen Uptake in Three Species of Tubicolous Polychaetes (Nereis Spp.). J. Comp. Physiol. B 1981, 145, 45–50. [Google Scholar] [CrossRef]
- Womersley, J.R. Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known. J. Physiol. 1955, 127, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Özdinç Çarpinlioǧlu, M.; Yaşar Gündoǧdu, M. A Critical Review on Pulsatile Pipe Flow Studies Directing towards Future Research Topics. Flow Meas. Instrum. 2001, 12, 163–174. [Google Scholar] [CrossRef]
- Loudon, C.; Tordesillas, A. The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow. J. Theor. Biol. 1998, 191, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.L.; Weissburg, M.J. Hard Clams (Mercenaria mercenaria) Evaluate Predation Risk Using Chemical Signals from Predators and Injured Conspecifics. J. Chem. Ecol. 2006, 32, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.R.; Weissburg, M.J. The Hydrodynamics of Chemical Cues Among Aquatic Organisms. Annu. Rev. Fluid Mech. 2009, 41, 73–90. [Google Scholar] [CrossRef]
- Du Clos, K.T.; Jiang, H. Overcoming Hydrodynamic Challenges in Suspension Feeding by Juvenile Mya arenaria Clams. J. R. Soc. Interface 2018, 15, 20170755. [Google Scholar] [CrossRef] [PubMed]
- Kersey Sturdivant, S.; Perchik, M.; Brill, R.W.; Bushnell, P.G. Metabolic Responses of the Nereid Polychaete, Alitta Succinea, to Hypoxia at Two Different Temperatures. J. Exp. Mar. Biol. Ecol. 2015, 473, 161–168. [Google Scholar] [CrossRef]
- Riisgard, H.U. Suspension Feeding in the Polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser 1991, 70, 19–37. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Larsen, P. Water Pumping and Analysis of Flow in Burrowing Zoobenthos: An Overview. Aquat. Ecol. 2005, 39, 237–258. [Google Scholar] [CrossRef]
- Volaric, M.P.; Berg, P.; Reidenbach, M.A. Oxygen Metabolism of Intertidal Oyster Reefs Measured by Aquatic Eddy Covariance. Mar. Ecol. Prog. Ser. 2018, 599, 75–91. [Google Scholar] [CrossRef]
I | W (g) | Sequence | vp (mm s−1) | vp max (mm s−1) | L (mm) | fp (Hz) |
---|---|---|---|---|---|---|
1 | 0.2 | 1 | 5.33 | 9.8 | 6.4 | 0.67 |
4 | 11.16 | 16.35 | - | 0.77 | ||
2 | 0.12 | 5 | 7.05 | 8.83 | 5.17 | 0.77 |
3 | 0.17 | 6 | 8.64 | 11.58 | 6.97 | 0.77 |
4 | 1.05 | 8 | 13.68 | 18.78 | 20.8 | 0.77 |
5 | 0.38 | - | - | - | - | - |
I | Sequence | Burrow Location | D (mm) | Re | Q (mm3 s−1) | v (mm s−1) | va Amplitude (mm) | fQ (Hz) | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | Near entrance | 1.7 | 3.08 | 1.95 | 1.64 | 2.5 | 0.744 | 1.96 |
3 | Behind worm | 1.9 | 13.60 | 9.29 | 6.65 | 3.5 | 0.93 | 2.37 | |
4 | Near entrance | 3.1 | 6.73 | 7.60 | 2.00 | 3.4 | 0.78 | 3.57 | |
2 | 5 | Behind worm | 2.5 | 2.60 | 2.30 | 0.97 | - | 0 | 0 |
3 | 6 | Near entrance | 3.6 | 12.90 | 16.70 | 3.40 | 3.1 | 1.58 | 5.83 |
7 | Near entrance | 2.3 | 8.70 | 7.10 | 3.60 | 4.4 | 0.744 | 2.53 | |
4 | 8 | Near entrance | 2.5 | 15.80 | 14.20 | 5.90 | 5.0 | 0.488 | 2.26 |
9 | Behind worm | 1.8 | 27.30 | 17.80 | 14.10 | - | 0 | 0 | |
5 | 10 | Behind worm | 2.0 | 11.10 | 8.00 | 5.20 | 2.8 | 0.186 | 1.11 |
11 | Near entrance | 2.0 | 12.30 | 8.80 | 5.70 | 3.6 | 1.02 | 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, E.A.K.; Reidenbach, M.A. Pulsatile Ventilation Flow in Polychaete Alitta succinea Burrows. J. Mar. Sci. Eng. 2024, 12, 1037. https://doi.org/10.3390/jmse12071037
Murphy EAK, Reidenbach MA. Pulsatile Ventilation Flow in Polychaete Alitta succinea Burrows. Journal of Marine Science and Engineering. 2024; 12(7):1037. https://doi.org/10.3390/jmse12071037
Chicago/Turabian StyleMurphy, Elizabeth A. K., and Matthew A. Reidenbach. 2024. "Pulsatile Ventilation Flow in Polychaete Alitta succinea Burrows" Journal of Marine Science and Engineering 12, no. 7: 1037. https://doi.org/10.3390/jmse12071037
APA StyleMurphy, E. A. K., & Reidenbach, M. A. (2024). Pulsatile Ventilation Flow in Polychaete Alitta succinea Burrows. Journal of Marine Science and Engineering, 12(7), 1037. https://doi.org/10.3390/jmse12071037