Arctic-Type Seismoacoustic Waveguide: Theoretical Foundations and Experimental Results
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. Model Water–Ice–Snow
2.2. Model Seafloor–Water–Ice
3. Results of Full-Scale Experiments
3.1. Equipment
3.2. Active Mode
3.3. Passive Mode
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H.; et al. Assessment of Undiscovered Oil and Gas in the Arctic. Science 2009, 324, 1175–1179. [Google Scholar] [CrossRef]
- Laverov, N.P.; Lobkovsky, L.I.; Kononov, M.V.; Dobretsov, N.L.; Vernikovsky, V.A.; Sokolov, S.D.; Shipilov, E.V. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf. Geotectonics 2013, 47, 1–30. [Google Scholar] [CrossRef]
- Mordret, A.; Landès, M.; Shapiro, N.M.; Singh, S.C.; Roux, P.; Barkved, O.I. Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophys. J. Int. 2013, 193, 1627–1643. [Google Scholar] [CrossRef]
- Yanovskaya, T.; Koroleva, T.; Lyskova, E. Effect of earthquakes on ambient noise surface wave tomography in upper-mantle studies. Geophys. J. Int. 2016, 205, 1208–1220. [Google Scholar] [CrossRef]
- Godin, O.A.; Zabotin, N.A.; Goncharov, V.V. Ocean tomography with acoustic daylight. Geophys. Res. Lett. 2010, 37, L13605. [Google Scholar] [CrossRef]
- Li, S.; Yuan, S.; Liu, S.; Wen, J.; Huang, Q.; Zhang, Z. Characteristics of Low-Frequency Acoustic Wave Propagation in Ice-Covered Shallow Water Environment. Appl. Sci. 2021, 11, 7815. [Google Scholar] [CrossRef]
- Guan, S.; Brookens, T.; Vignola, J. Use of Underwater Acoustics in Marine Conservation and Policy: Previous Advances, Current Status, and Future Needs. J. Mar. Sci. Eng. 2021, 9, 173. [Google Scholar] [CrossRef]
- Asming, V.E.; Baranov, S.V.; Vinogradov, A.N.; Vinogradov, Y.A.; Fedorov, A.V. Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions. Acoust. Phys. 2016, 62, 583–592. [Google Scholar] [CrossRef]
- Rogozhin, E.A.; Antonovskaya, G.N.; Kapustian, N.K. Current state and prospects of the development of an Arctic seismic monitoring system. Seism. Instr. 2016, 52, 144–153. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Kishankov, A.; Yanchevskaya, A.; Bogoyavlensky, I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. Geosciences 2018, 8, 453. [Google Scholar] [CrossRef]
- Johansen, T.A.; Ruud, B.O.; Tømmerbakke, R.; Jensen, K. Seismic on floating ice: Data acquisition versus flexural wave noise. Geophys. Prospect. 2019, 67, 532–549. [Google Scholar] [CrossRef]
- Jakovlev, A.V.; Kovalev, S.M.; Shimanchuk, E.V.; Nubom, A.A. Seismic Network on Drifted Ice Floes: A Case Study in North Barents Sea. Dokl. Earth Sci. 2021, 496, 155–159. [Google Scholar] [CrossRef]
- Serripierri, A.; Moreau, L.; Boue, P.; Weiss, J.; Roux, P. Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard. Cryosphere 2022, 16, 2527–2543. [Google Scholar] [CrossRef]
- Sobisevich, L.; Agafonov, V.; Presnov, D.; Gravirov, V.; Likhodeev, D.; Zhostkov, R. The Advanced Prototype of the Geohydroacoustic Ice Buoy. Sensors 2020, 20, 7213. [Google Scholar] [CrossRef]
- Krylov, A.A.; Novikov, M.A.; Kovachev, S.A.; Roginskiy, K.A.; Ilinsky, D.A.; Ganzha, O.Y.; Ivanov, V.N.; Timashkevich, G.K.; Samylina, O.S.; Lobkovsky, L.I.; et al. Features of Seismological Observations in the Arctic Seas. J. Mar. Sci. Eng. 2023, 11, 2221. [Google Scholar] [CrossRef]
- Johnson, M.A.; Marchenko, A.V.; Dammann, D.O.; Mahoney, A.R. Observing Wind-Forced Flexural-Gravity Waves in the Beaufort Sea and Their Relationship to Sea Ice Mechanics. J. Mar. Sci. Eng. 2021, 9, 471. [Google Scholar] [CrossRef]
- Brekhovskikh, L.M. Waves in Layered Media, 2nd ed.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Serdyukov, A.; Koulakov, I.; Yablokov, A. Numerical modelling of seismic waves from earthquakes recorded by a network on ice floes. Geophys. J. Int. 2019, 218, 74–87. [Google Scholar] [CrossRef]
- Presnov, D.A.; Zhostkov, R.A.; Gusev, V.A.; Shurup, A.S. Dispersion dependences of elastic waves in an ice-covered shallow sea. Acoust. Phys. 2014, 60, 455–465. [Google Scholar] [CrossRef]
- Stein, P.J.; Euerle, S.E.; Parinella, J.C. Inversion of pack ice elastic wave data to obtain ice physical properties. J. Geophys. Res. 1998, 103, 21783–21793. [Google Scholar] [CrossRef]
- Squire, V.A.; Hosking, R.J.; Kerr, A.D.; Langhorne, P.J. Moving Loads on Ice Plates; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Dong, Y.; Piao, S.; Gong, L.; Zheng, G.; Iqbal, K.; Zhang, S.; Wang, X. Scholte Wave Dispersion Modeling and Subsequent Application in Seabed Shear-Wave Velocity Profile Inversion. J. Mar. Sci. Eng. 2021, 9, 840. [Google Scholar] [CrossRef]
- Tikhotskii, S.A.; Presnov, D.A.; Sobisevich, A.L.; Shurup, A.S. The use of low-frequency noise in passive seismoacoustic tomography of the ocean floor. Acoust. Phys. 2021, 67, 90–98. [Google Scholar] [CrossRef]
- Sementsov, K.A.; Nosov, M.A.; Kolesov, S.V.; Karpov, V.A.; Matsumoto, H.; Kaneda, Y. Free gravity waves in the ocean excited by seismic surface waves: Observations and numerical simulations. J. Geophys. Res. Ocean. 2019, 124, 8468–8484. [Google Scholar] [CrossRef]
Density, kg/m3 | Viscosity, Pa∙s; Velocity, m/s | Thickness, m | |
---|---|---|---|
Snow | = 300 | ηs = 100 | hs = 0.5 |
Ice | = 900 | cl = 4000; ct = 1900 | h = 2 |
Water | = 1000 | c0 = 1500 | H = 18 |
Seafloor | = 2600 | cl′ = 5250; ct′ = 2900 | ∞ |
Model Name | Frequency Band, Hz | Sensitivity, V/(m/s) |
---|---|---|
CME-4211 | 0.03–50 | ~2000 |
SM3-OS | 0.03–10 | ~4000 |
GS-ONE LF | 4.5–1000 | ~100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobisevich, A.; Presnov, D.; Shurup, A. Arctic-Type Seismoacoustic Waveguide: Theoretical Foundations and Experimental Results. J. Mar. Sci. Eng. 2024, 12, 1060. https://doi.org/10.3390/jmse12071060
Sobisevich A, Presnov D, Shurup A. Arctic-Type Seismoacoustic Waveguide: Theoretical Foundations and Experimental Results. Journal of Marine Science and Engineering. 2024; 12(7):1060. https://doi.org/10.3390/jmse12071060
Chicago/Turabian StyleSobisevich, Alexey, Dmitriy Presnov, and Andrey Shurup. 2024. "Arctic-Type Seismoacoustic Waveguide: Theoretical Foundations and Experimental Results" Journal of Marine Science and Engineering 12, no. 7: 1060. https://doi.org/10.3390/jmse12071060
APA StyleSobisevich, A., Presnov, D., & Shurup, A. (2024). Arctic-Type Seismoacoustic Waveguide: Theoretical Foundations and Experimental Results. Journal of Marine Science and Engineering, 12(7), 1060. https://doi.org/10.3390/jmse12071060