Aerodynamic Performance and Coupling Gain Effect of Archimedes Spiral Wind Turbine Array
Abstract
:1. Introduction
2. Numerical Methods
2.1. Geometry of the ASWT
2.2. Simulation Setup
2.3. Validation of Numerical Simulation
3. Results and Discussion
3.1. Parallel Arrangement
3.2. Tandem Arrangement
3.3. Triangular Array
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Zhao, Y. Review and outlook on the international renewable energy development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Matsumoto, K.I.; Matsumura, Y. Challenges and economic effects of introducing renewable energy in a remote island: A case study of Tsushima Island, Japan. Renew. Sustain. Energy Rev. 2022, 162, 112456. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid integration challenges of wind energy: A review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Summerfield-Ryan, O.; Park, S. The power of wind: The global wind energy industry’s successes and failures. Ecol. Econ. 2023, 210, 107841. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Johari, M.K.; Jalil, M.; Shariff, M.F.M. Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). Int. J. Eng. Technol. 2018, 7, 74–80. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A review. Energies 2018, 11, 506. [Google Scholar] [CrossRef]
- Castellanos Bustamante, R.; Roman Messina, A.; Ramirez Gonzalez, M.; Calderon Guizar, G. Assessment of frequency performance by wind integration in a large-scale power system. Wind Energy 2018, 21, 1359–1371. [Google Scholar] [CrossRef]
- Murali, A.; Rajagopalan, R.G. Numerical simulation of multiple interacting wind turbines on a complex terrain. J. Wind Eng. Ind. Aerodyn. 2017, 162, 57–72. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J.; Montesdeoca, N.G. Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy 2018, 15, 143. [Google Scholar] [CrossRef]
- Abramic, A.; Mendoza, A.G.; Haroun, R. Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles. Renew. Sustain. Energy Rev. 2021, 145, 111119. [Google Scholar] [CrossRef]
- Ji, H.S.; Baek, J.H.; Mieremet, R.; Kim, K.C. The aerodynamic performance study on small wind turbine with 500W class through wind tunnel experiments. Int. J. Renew. Energy Sources 2016, 1, 7–12. [Google Scholar]
- Song, K.; Huan, H.; Kang, Y. Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle. Energies 2023, 16, 385. [Google Scholar] [CrossRef]
- Lu, Q.; Li, Q.; Kim, Y.K.; Kim, K.C. A study on design and aerodynamic characteristics of a spiral-type wind turbine blade. J. Korean Soc. Vis. 2012, 10, 27–33. [Google Scholar]
- Kim, K.C.; Ji, H.S.; Kim, Y.K.; Lu, Q.; Baek, J.H.; Mieremet, R. Experimental and numerical study of the aerodynamic characteristics of an archimedes spiral wind turbine blade. Energies 2014, 7, 7893–7914. [Google Scholar] [CrossRef]
- Safdari, A.; Kim, K.C. Aerodynamic and structural evaluation of horizontal archimedes spiral wind turbine. J. Clean Energy Technol. 2015, 3, 34–38. [Google Scholar] [CrossRef]
- Chaudhary, S.; Jaiswal, S.; Nanda, R.; Patel, S.; Kumar, P. Comparison of torque characteristics of Archimedes wind turbine evaluated by analytical and experimental study. Int. J. Mech. Prod. Eng. 2016, 4, 75–78. [Google Scholar]
- Rao, S.S.; Shanmukesh, K.; Naidu, M.K.; Kalla, P. Design and analysis of Archimedes aero-foil wind turbine blade for light and moderate wind speeds. Int. J. Recent Technol. Mech. Electr. Eng. 2018, 5, 1–5. [Google Scholar]
- Jang, H.; Kim, D.; Hwang, Y.; Paek, I.; Kim, S.; Baek, J. Analysis of Archimedes spiral wind turbine performance by simulation and field test. Energies 2019, 12, 4624. [Google Scholar] [CrossRef]
- Nawar, M.A.; Hameed, H.A.; Ramadan, A.; Attai, Y.A.; Mohamed, M.H. Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance. Energy 2021, 223, 120051. [Google Scholar] [CrossRef]
- Kamal, A.M.; Nawar, M.A.; Attai, Y.A.; Mohamed, M.H. Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations. Energy 2022, 250, 123892. [Google Scholar] [CrossRef]
- Kamal, A.M.; Nawar, M.A.; Attai, Y.A.; Mohamed, M.H. Archimedes Spiral Wind Turbine performance study using different aerofoiled blade profiles: Experimental and numerical analyses. Energy 2023, 262, 125567. [Google Scholar] [CrossRef]
- Al-murshedi, A.S.N. Spiral Wind Turbine Investigations for Various Material Constriction Based on Static and Dynamic Analyses. J. Adv. Stud. Eng. Sci. 2023, 2, 99–109. [Google Scholar]
- Refaie, A.G.; Hameed, H.A.; Nawar, M.A.; Attai, Y.A.; Mohamed, M.H. Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator. Energy 2021, 231, 121128. [Google Scholar] [CrossRef]
- Refaie, A.G.; Hameed, H.A.; Nawar, M.A.; Attai, Y.A.; Mohamed, M.H. Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines. Energy 2022, 239, 122295. [Google Scholar] [CrossRef]
- Vanderwende, B.J.; Kosović, B.; Lundquist, J.K.; Mirocha, J.D. Simulating effects of a wind-turbine array using LES and RANS. J. Adv. Model. Earth Syst. 2016, 8, 1376–1390. [Google Scholar] [CrossRef]
- Bremseth, J.; Duraisamy, K. Computational analysis of vertical axis wind turbine arrays. Theor. Comput. Fluid Dyn. 2016, 30, 387–401. [Google Scholar] [CrossRef]
- Tang, H.; Lam, K.M.; Shum, K.M.; Li, Y. Wake effect of a horizontal axis wind turbine on the performance of a downstream turbine. Energies 2019, 12, 2395. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, P.; Wang, Y.; Hu, Q.; Li, J. Performance analysis of a ductless Archimedes screw turbine array for deep-sea power supply. Ocean Eng. 2023, 288, 116113. [Google Scholar] [CrossRef]
- Labib, A.M.; AbdelGawad, A.F.; Nasseif, M.M. Effect of aspect ratio on aerodynamic performance of Archimedes spiral wind turbine. Egypt. Int. J. Eng. Sci. Technol. 2020, 32, 66–72. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Song, K.; Kang, Y. A Numerical Performance Analysis of a Rim-Driven Turbine in Real Flow Conditions. J. Mar. Sci. Eng. 2022, 10, 1185. [Google Scholar] [CrossRef]
- Song, K.; Yang, B. A Comparative Study on the Hydrodynamic-Energy Loss Characteristics between a Ducted Turbine and a Shaftless Ducted Turbine. J. Mar. Sci. Eng. 2021, 9, 930. [Google Scholar] [CrossRef]
- Lawson, M.J.; Li, Y.; Sale, D.C. Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine. In Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; pp. 711–720. [Google Scholar]
- Moshfeghi, M.; Shams, S.; Hur, N. Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. J. Wind Eng. Ind. Aerodyn. 2017, 167, 148–159. [Google Scholar] [CrossRef]
- Al-Dabbagh, M.A.; Yuce, M.I. Numerical evaluation of helical hydrokinetic turbines with different solidities under different flow conditions. Int. J. Environ. Sci. Technol. 2019, 16, 4001–4012. [Google Scholar] [CrossRef]
- Ramana Murthy, S.V.; Kishore Kumar, S. Effect of different turbulence models on the numerical analysis of axial flow turbine stage of a typical turbofan engine. In Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, 5–6 December 2013. [Google Scholar]
- Moshfeghi, M.; Song, Y.J.; Xie, Y.H. Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2012, 107, 94–105. [Google Scholar] [CrossRef]
- Ghasemian, M.; Nejat, A. Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy. Energy Convers. Manag. 2015, 99, 210–220. [Google Scholar] [CrossRef]
- Monatrakul, W.; Suntivarakorn, R. Effect of blade angle on turbine efficiency of a Spiral Horizontal Axis Hydro Turbine. Energy Procedia 2017, 138, 811–816. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Sardar, A.; Kulkarni, V.; Saha, U.K. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers. Manag. 2018, 158, 36–49. [Google Scholar] [CrossRef]
- Apsley, D.D.; Stallard, T.; Stansby, P.K. Actuator-line CFD modelling of tidal-stream turbines in arrays. J. Ocean Eng. Mar. Energy 2018, 4, 259–271. [Google Scholar]
- Ouro, P.; Ramírez, L.; Harrold, M. Analysis of array spacing on tidal stream turbine farm performance using Large-Eddy Simulation. J. Fluids Struct. 2019, 91, 102732. [Google Scholar]
- Song, K.; Huan, H.T.; Wei, L.C.; Liu, C.X. A comparative study of hydrodynamic performance between ducted and non-ducted Archimedes spiral hydrokinetic turbines. Ocean Eng. 2024, 306, 118087. [Google Scholar]
- Allah, V.A.; Mayam, M.H.S. Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines. Energy 2017, 121, 533–544. [Google Scholar] [CrossRef]
- Veisi, A.A.; Mayam, M.H.S. Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation. Appl. Energy 2017, 197, 375–392. [Google Scholar] [CrossRef]
Progress | Description | Outcome |
---|---|---|
Kim et al. [15] | A theoretical and practical analysis on ASWT | Addressing a theoretical approach to design the turbine. |
Labib et al. [31] | The effect of aspect ratio was analyzed. | The maximum power coefficient was increased to 0.249 by extending the aspect ratio at a tip-speed ratio of 1.413. |
Rao et al. [19] | Add an aerofoil to the blade of ASWT. | The aerofoiled turbine significantly increased the torque when compared to the original turbine. |
Nawar et al. [21] | Variable-angle rotors were analyzed. | The variable-angle rotor’s output power increased by 14.7% in comparison to the fixed-angle rotor. |
Refaie et al. [25] | Add a shroud to ASWT | The shrouded ASWT demonstrated a 2.1 times improvement in power compared to the bare rotor. |
Kamal et al. [22] | The thickness of the blades affecting the performance was analyzed. | Performance is enhanced by reducing rotor blade thickness. |
Current work | Aerodynamic performance and coupling gain effect of ASWT array were analyzed. | The reverse rotation configuration in parallel arrangement achieves the maximum coupling gain at a spacing of 1.1 D. The triangular array can achieve a 2.56% increase in the maximum performance under an optimal configuration. |
Mesh Density | Total Cells (Million) | ||
---|---|---|---|
Coarse | 4 | 0.230 | 0.675 |
Medium | 5 | 0.234 | 0.679 |
Fine | 6 | 0.234 | 0.680 |
z | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | |
---|---|---|---|---|---|---|---|
x | |||||||
1.0 | −0.01140 | −0.00855 | −0.00997 | −0.01140 | −0.00997 | −0.00997 | |
1.2 | 0.011396 | 0.011396 | 0.014246 | 0.014246 | 0.011396 | 0.011396 | |
1.4 | 0.025642 | 0.019944 | 0.014246 | 0.017094 | 0.014246 | 0.011396 | |
1.6 | 0.022792 | 0.022792 | 0.019984 | 0.017350 | 0.019944 | 0.017094 | |
1.8 | 0.023842 | 0.022792 | 0.019944 | 0.019646 | 0.019944 | 0.017094 | |
2.0 | 0.019944 | 0.019944 | 0.019760 | 0.017094 | 0.019668 | 0.014246 |
z | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | |
---|---|---|---|---|---|---|---|
x | |||||||
1.0 | −0.00997 | −0.00427 | −0.00427 | −0.00472 | −0.00142 | −0.00285 | |
1.2 | 0.011396 | 0.014246 | 0.011396 | 0.011396 | 0.005698 | 0.005698 | |
1.4 | 0.019944 | 0.014246 | 0.020864 | 0.017094 | 0.011396 | 0.011396 | |
1.6 | 0.022792 | 0.017094 | 0.019944 | 0.019944 | 0.014246 | 0.017094 | |
1.8 | 0.022792 | 0.019944 | 0.019944 | 0.017094 | 0.017094 | 0.017094 | |
2.0 | 0.019944 | 0.016850 | 0.017094 | 0.016850 | 0.017094 | 0.016850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Huan, H.; Wei, L.; Liu, C. Aerodynamic Performance and Coupling Gain Effect of Archimedes Spiral Wind Turbine Array. J. Mar. Sci. Eng. 2024, 12, 1062. https://doi.org/10.3390/jmse12071062
Song K, Huan H, Wei L, Liu C. Aerodynamic Performance and Coupling Gain Effect of Archimedes Spiral Wind Turbine Array. Journal of Marine Science and Engineering. 2024; 12(7):1062. https://doi.org/10.3390/jmse12071062
Chicago/Turabian StyleSong, Ke, Huiting Huan, Liuchuang Wei, and Chunxia Liu. 2024. "Aerodynamic Performance and Coupling Gain Effect of Archimedes Spiral Wind Turbine Array" Journal of Marine Science and Engineering 12, no. 7: 1062. https://doi.org/10.3390/jmse12071062
APA StyleSong, K., Huan, H., Wei, L., & Liu, C. (2024). Aerodynamic Performance and Coupling Gain Effect of Archimedes Spiral Wind Turbine Array. Journal of Marine Science and Engineering, 12(7), 1062. https://doi.org/10.3390/jmse12071062