Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device
Abstract
:1. Introduction
2. Overview of Energy Harvesting Devices
2.1. Sea Area Characteristic Analysis
2.2. Design of a Floating Body with a Flow Velocity Increase
2.3. Design of Mooring System
2.4. Comparison and Analysis of Energy Capture Mechanism
2.5. Overall Scheme
3. Theoretical Analysis of Savonius Water Turbine
4. Impeller Parameters
4.1. The Influence of Blade Number
4.2. The Influence of Stage Number
4.3. The Influence of Distance from Water
5. Results Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |
Maximum flow rate | |
Semi-daily cycle of the power flow | |
Energy utilization coefficient | |
Real-time flow rate | |
Blade sweep area | |
Ts | Effective time for the impeller to operate in a half-day cycle |
Radial projected area of the impeller | |
Velocity of the water | |
Impeller power | |
Concave resistance coefficient | |
Convex resistance coefficient | |
Blade tip linear velocity | |
PL | Energy of water flow against concave surface per unit time |
PD | Energy of water flow on a convex surface per unit of time |
FLj | Force of micro-area on a concave surface |
FDi | Force of the micro-area on a convex surface |
dw | Water action on the impeller per unit of time |
Resistance part of the turbine | |
Driving part of the turbine | |
Relative fluid velocity | |
Body effective area | |
Resistance coefficient | |
Length of the impeller | |
Distance of the impeller center from the water surface | |
Impeller diameter | |
Phase angle of the impeller | |
Greek Symbols | |
Density of seawater (kg/m3) | |
Gravitational acceleration (m/s2) | |
Abbreviation | |
S-type turbine | Savonius-type turbine |
PLC | Programmable Logic Controller |
LabVIEW | Laboratory Virtual Instrument Engineering Workbench |
References
- Zheng, J.-H.; Zhang, J.-S. Recent advances and key technologies in marine energy utilization engineering. J. Hohai Univ. Nat. Sci. 2015, 43, 450–455. [Google Scholar]
- Zhang, J.; Tang, Z.; Qian, F. A review of recent advances and key technologies in ocean thermal energy conversion. J. Hohai Univ. Nat. Sci. 2019, 47, 55–64. [Google Scholar]
- Li, S.-H.; Li, F.; Wang, J. Current situation and development suggestions of Marine energy development in China. Ocean Dev. Manag. 2014, 9, 7. [Google Scholar]
- Zhang, J.-S.; Wang, G.-H.; Lin, X.-F. A Review of Recent Development and Key Technology Problems in Utilization of Tidal Stream Energy. J. Hohai Univ. Nat. Sci. 2021, 49, 220–232. [Google Scholar]
- Li, G.; Zhu, W.-D. Tidal Current Energy Haresting Technologies: A Review of Current Satus and Life Cycle Assessment. Renew. Sustain. Energy Rev. 2023, 179, 113269. [Google Scholar] [CrossRef]
- Sun, K.; Chen, T.-Y. Current Status and Trends of Research on Ocean Tidal Energy Generation Technology. Ship Eng. 2024, 46, 16–27. [Google Scholar]
- Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Pucci, M.; Spina, R.; Zanforlin, S. Vertical-Axis Tidal Turbines: Model Development and Farm Layout Design. Energies 2024, 17, 2366. [Google Scholar] [CrossRef]
- Mohammad, S.; Madjid, H.G.; Babak, S.M. Performance enhancement of low speed current savonius tidal turbines through adding semi-cylindrical deflectors. Ocean Eng. 2022, 259, 111873. [Google Scholar]
- Shen, C.; Zhang, J.; Ding, C.; Wang, S. Simulation Analysis and Experimental Study on Airfoil Optimization of Low-Velocity Turbine. J. Mar. Sci. Eng. 2024, 12, 303. [Google Scholar] [CrossRef]
- Mei, Y.; Li, Q.-P.; Chen, S.-F.; Wang, Q.-B. Study on Hydrodynamic Performance of Savonius Turbine. Water Resour. Power 2022, 40, 180–183. [Google Scholar]
- Li, Y.; Deng, Q.-Y.; Yang, S.-B.; Tong, G.-Q.; Feng, F. Influence of end plate on starting performance of Savonius wind turbines. J. Drain. Irrig. Mach. Eng. 2024, 42, 463–469. [Google Scholar]
- Wang, S.-H.; Jiang, C.-H.; Chen, J.-H.; Li, H.; Wu, S.-R. Research on the flow reduction performance of a savonius hydrokinetic rotor with a triangular array. Mar. Sci. 2024, 48, 64–74. [Google Scholar]
- Yang, Z.-Z.; Song, R.-Y.; Liu, B.-Y.; Ren, C.-J.; Lin, Z. Multi-objective Optimization of A New Savonius-type Impeller Parameters with Slots. Water Resour. Power 2023, 41, 203–206. [Google Scholar]
- Wakui, T.; Tanzawa, Y.; Hashizume, T.; Nagao, T. Hybrid configuration of Darrieus and Savonius rotors for standalone wind turbine-generator systems. Electr. Eng. Jpn. 2005, 3, 13–22. [Google Scholar] [CrossRef]
- Asadi, M.; Hassanzadeh, R. Effects of internal rotor parameters on the performance of a two bladed Darrieustwo bladed Savonius hybrid wind turbine. Energy Conv. Manag. 2021, 238, 114109.1–114109.16. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Xu, H.-T. Wind tunnel investigation on the two- and three-blade Savonius rotor with central shaft at different gap ratio. J. Renew. Sustain. Energy 2016, 8, 013303. [Google Scholar] [CrossRef]
- Gupta, R.; Biswas, A.; Sharma, K.K. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor. Renew. Energy 2007, 33, 1974–1981. [Google Scholar] [CrossRef]
- Tang, J.-W.; Hu, Y.; Song, B.-F.; Yang, H. Unsteady Aerodynamic Optimization of Airfoil for Cycloidal Propellers Based on Surrogate Model. J. Aircr. 2017, 54, 1241–1256. [Google Scholar] [CrossRef]
- Gao, R.-J.; Chen, J.-H.; Zhang, J.-J.; Zhou, S.-Y.; Xu, H.-F.; Wu, J.-D.; Qian, X.-H. Hydrodynamic Study on Energy Capturing Performance of Horizontal Axis Blades under Sub-Low Speed Tidal Current. China Ocean Eng. 2020, 34, 374–386. [Google Scholar] [CrossRef]
- Yan, Y.-T.; Xu, S.-M.; Liu, C.; Zhang, X.; Chen, J.-M.; Zhang, X.-M.; Dong, Y.-J. Research on the Hydrodynamic Performance of a Horizontal-Axis Tidal Current Turbine with Symmetrical Airfoil Blades Based on Swept-Back Models. J. Mar. Sci. Eng. 2022, 10, 1515. [Google Scholar] [CrossRef]
- Jiao, H.-F.; Wang, M.-C.; Liu, H.-Y.; Chen, S.-S. Positive and Negative Performance Analysis of the Bi-Directional Full-Flow Pump with an “S” Shaped Airfoil. J. Mar. Sci. Eng. 2023, 11, 1188. [Google Scholar] [CrossRef]
- Du, X.-S.; He, P.; Martins, J. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling. Aerosp. Sci. Technol. 2021, 113, 106701. [Google Scholar] [CrossRef]
- Bangga, G.; Hutani, S.; Heramarwan, H. The Effects of Airfoil Thickness on Dynamic Stall Characteristics of High-Solidity Vertical Axis Wind Turbines. Adv. Theory Simul. 2021, 4, 2000204. [Google Scholar] [CrossRef]
Horizontal Axis | Vertical Axis | ||
---|---|---|---|
Model | NACA airfoil, sheet airfoil | S-type water turbine | H-type water turbine |
Flow direction | Single direction | Multi-direction | Multi-direction |
Adapts to low-flow | Airfoil dependent | Yes | No |
Starting torque | Small | Big | Small |
Parameter | Value | Unit |
---|---|---|
Floating volume | 3 | m3 |
Floating mass | 150 | kg |
Turbine diameter | 0.5 | m |
Blade radius | 0.15 | m |
Blade thickness | 0.002 | m |
Turbine height | 0.61 | m |
Blade shape | Semicircle | / |
Overlap rate | 0.15 | / |
Turbine volume | 0.005 | m3 |
Moment of inertia of the turbine | (0.337, 0.337, 0.16) | kg·m2 |
Parameter | Value | Unit |
---|---|---|
Depth of water | 2 | m |
Sink length | 70 | m |
Sink width | 3.8 | m |
Sink depth | 3 | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, L.; Wang, Y.; Li, H.; Chen, J.; Huang, F.; Jiang, C. Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device. J. Mar. Sci. Eng. 2024, 12, 1100. https://doi.org/10.3390/jmse12071100
Bao L, Wang Y, Li H, Chen J, Huang F, Jiang C. Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device. Journal of Marine Science and Engineering. 2024; 12(7):1100. https://doi.org/10.3390/jmse12071100
Chicago/Turabian StyleBao, Lingjie, Ying Wang, Hao Li, Junhua Chen, Fangping Huang, and Chuhua Jiang. 2024. "Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device" Journal of Marine Science and Engineering 12, no. 7: 1100. https://doi.org/10.3390/jmse12071100
APA StyleBao, L., Wang, Y., Li, H., Chen, J., Huang, F., & Jiang, C. (2024). Design and Experimental Research of a Lifting-Type Tidal Energy Capture Device. Journal of Marine Science and Engineering, 12(7), 1100. https://doi.org/10.3390/jmse12071100