A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation
Abstract
:1. Introduction
2. Region Setting
3. Methods
3.1. Establishment of Basic Model
3.2. Basic Model Parameter Setting
3.3. Main Controlling Factor Analysis Model Parameter Setting
4. Results
4.1. Analysis of Basic Model Results
4.2. Analysis of Tide Model Results
4.2.1. Analysis of Sediment Distribution
4.2.2. Analysis of Flow Velocity Distribution
4.2.3. Analysis of Sand Bodies
4.2.4. Analysis of Interlayers
4.3. Analysis of Initial Water Level Model Results
4.3.1. Analysis of Sediment Distribution
4.3.2. Analysis of Flow Velocity Distribution
4.3.3. Analysis of Sand Bodies
4.3.4. Analysis of Interlayers
5. Discussion
6. Conclusions
- The tidal amplitude effect is the factor that produces the greatest impact on the shelf tidal delta; the average length, width, and thickness of tidal bars and sand sheets increase with tidal amplitude, and the three-dimensional configuration characteristic parameters are positively correlated with tidal amplitude.
- The effect of initial water level height on the development of shelf-type tidal delta sand bodies shows that the development of tidal bars, sand sheets, and tidal channels is limited with the increase in water level from a low water level to medium water level, and only a large area of thin sand sheets is formed under a high water level, indicating that the development of sediment is more appropriate in the low water level, namely the shallow-water shelf condition. Sand bodies do not easily form in a deep-water shelf.
- Quantitative characterization of the distribution of interlayers in the bars shows that the tidal amplitude and initial water level have a strong influence on the morphology of the interlayers. In this case, the tidal amplitude is negatively correlated with both the length of the interlayers and the thickness of the interlayers, and the initial water level is positively correlated with both the length and the thickness of the interlayers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snedden, J.W.; Bergman, K.M. Isolated shallow marine sand bodies: Deposits for all interpretations. In Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation; Bergman, K.M., Snedden, J.W., Eds.; SEPM: Claremore, OK, USA, 1999; pp. 1–11. [Google Scholar]
- Bourget, J.; Ainsworth, R.B.; Thompson, S. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta (NW Australia): Process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands. Mar. Pet. Geol. 2014, 57, 359–384. [Google Scholar] [CrossRef]
- Gil-Ortiz, M.; McDougall, N.D.; Cabello, P.; Marzo, M.; Ramos, E. Sedimentary architecture of a Middle Ordovician embayment in the Murzuq Basin (Libya). Mar. Pet. Geol. 2022, 135, 105339. [Google Scholar] [CrossRef]
- Collins, D.S.; Avdis, A.; Wells, M.R.; Dean, C.D.; Mitchell, A.J.; Allison, P.A.; Johnson, H.D.; Hampson, G.J.; Hill, J.; Piggott, M.D. Prediction of shoreline–shelf depositional process regime guided by palaeotidal modelling. Earth-Sci. Rev. 2021, 223, 103827. [Google Scholar] [CrossRef]
- Desjardins, P.R.; Buatois, L.A.; Praat, B.R.; Mángano, M.G. Sedimentological–ichnological model for tide-dominated shelf sandbodies: Lower Cambrian Gog Group of western Canada. Sedimentology 2012, 59, 1452–1477. [Google Scholar] [CrossRef]
- Desjardins, P.R.; Buatois, L.A.; Mángano, M.G. Chapter 18—Tidal Flats and Subtidal Sand Bodies. In Developments in Sedimentology; Knaust, D., Bromley, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 64, pp. 529–561. [Google Scholar]
- Liu, X.; Lu, S.; Tang, M.; Sun, D.; Tang, J.; Zhang, K.; He, T.; Qi, N.; Lu, M. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Sci. 2021, 46, 2944–2957. [Google Scholar] [CrossRef]
- Qian, W.; Yin, T.; Hou, G. A new method for clastic reservoir prediction based on numerical simulation of diagenesis: A case study of Ed1 sandstones in Bozhong depression, Bohai Bay Basin, China. Adv. Geo-Energy Res. 2019, 3, 82–93. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, K.; Huang, J.; Lu, S. Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies 2019, 12, 1769. [Google Scholar] [CrossRef]
- Hu, C.; Yu, M.; Wei, H.; Liu, C. The mechanisms of energy transformation in sharp open-channel bends: Analysis based on experiments in a laboratory flume. J. Hydrol. 2019, 571, 723–739. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Zhou, Q.; Weng, Z.; Yuan, L.; Zhu, F.; Li, Z.; Zhang, Z.; Yang, B.; Zhao, Y. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Sci. 2020, 45, 634–644. [Google Scholar] [CrossRef]
- Liechoscki de Paula Faria, D.; Tadeu dos Reis, A.; Gomes de Souza, O. Three-dimensional stratigraphic-sedimentological forward modeling of an Aptian carbonate reservoir deposited during the sag stage in the Santos basin, Brazil. Mar. Pet. Geol. 2017, 88, 676–695. [Google Scholar] [CrossRef]
- Dalman, R.; Weltje, G.J.; Karamitopoulos, P. High-resolution sequence stratigraphy of fluvio–deltaic systems: Prospects of system-wide chronostratigraphic correlation. Earth Planet. Sci. Lett. 2015, 412, 10–17. [Google Scholar] [CrossRef]
- Lin, C.; Chen, B.; Ren, L.; Dong, C.; Zhang, X. A review of depositional numerical simulation and a case study. Acta Geol. Sin. 2023, 97, 2756–2773. [Google Scholar]
- van der Vegt, H.; Storms, J.E.A.; Walstra, D.J.R.; Howes, N.C. Can bed load transport drive varying depositional behaviour in river delta environments? Sediment. Geol. 2016, 345, 19–32. [Google Scholar] [CrossRef]
- Chatzirodou, A.; Karunarathna, H.; Reeve, D.E. Investigation of deep sea shelf sandbank dynamics driven by highly energetic tidal flows. Mar. Geol. 2016, 380, 245–263. [Google Scholar] [CrossRef]
- Salles, T.; Ding, X.; Webster, J.M.; Vila-Concejo, A.; Brocard, G.; Pall, J. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times. Sci. Rep. 2018, 8, 5252. [Google Scholar] [CrossRef] [PubMed]
- van de Lageweg, W.I.; Feldman, H. Process-based modelling of morphodynamics and bar architecture in confined basins with fluvial and tidal currents. Mar. Geol. 2018, 398, 35–47. [Google Scholar] [CrossRef]
- van de Lageweg, W.I.; Braat, L.; Parsons, D.R.; Kleinhans, M.G. Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology 2018, 46, 971–974. [Google Scholar] [CrossRef]
- Nnafie, A.; Wolf, T.B.J.; de Swart, H.E. Tidal sand ridges on the shelf: A numerical study of their natural morphodynamic evolution and response to interventions. Cont. Shelf Res. 2020, 205, 104195. [Google Scholar] [CrossRef]
- Ulmishek, G.F. Petroleum Geology and Resources of the West Siberian Basin, Russia. US Geol. Surv. Bull. 2003, 2201G, 49. [Google Scholar]
- Shemin, G.; Deev, E.; Vernikovsky, V.A.; Drachev, S.S.; Moskvin, V.; Vakulenko, L.; Pervukhina, N.; Sapyanik, V. Jurassic paleogeography and sedimentation in the northern West Siberia and South Kara Sea, Russian Arctic and Subarctic. Mar. Pet. Geol. 2019, 104, 286–312. [Google Scholar] [CrossRef]
- Kontorovich, V.A.; Ayunova, D.V.; Gubin, I.A.; Kalinin, A.Y.; Kalinina, L.M.; Kontorovich, A.E.; Malyshev, N.A.; Skvortsov, M.B.; Solov’ev, M.V.; Surikova, E.S. Tectonic evolution of the Arctic onshore and offshore regions of the West Siberian petroleum province. Russ. Geol. Geophys. 2017, 58, 343–361. [Google Scholar] [CrossRef]
- Sobornov, K.; Afanasenkov, A.; Gogonenkov, G. Strike-slip faulting in the northern part of the West Siberian Basin and Enisey-Khatanga Trough: Structural expression, development and implication for petroleum exploration. In Proceedings of the 3P Arctic Conference, Stavanger, Norway, 29 September–2 October 2015. [Google Scholar]
- Kontorovich, A.E.; Kontorovich, V.A.; Ryzhkova, S.V.; Shurygin, B.N.; Vakulenko, L.G.; Gaideburova, E.A.; Danilova, V.P.; Kazanenkov, V.A.; Kim, N.S.; Kostyreva, E.A.; et al. Jurassic paleogeography of the West Siberian sedimentary basin. Russ. Geol. Geophys. 2013, 54, 747–779. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Burshtein, L.M.; Malyshev, N.A.; Safronov, P.I.; Gus’kov, S.A.; Ershov, S.V.; Kazanenkov, V.A.; Kim, N.S.; Kontorovich, V.A.; Kostyreva, E.A.; et al. Historical-geological modeling of hydrocarbon generation in the Mesozoic–Cenozoic sedimentary basin of the Kara Sea (basin modeling). Russ. Geol. Geophys. 2013, 54, 917–957. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renew. Energy 2009, 34, 1517–1524. [Google Scholar] [CrossRef]
- Zheng, X.; Mayerle, R.; Wang, Y.; Zhang, H. Study of the wind drag coefficient during the storm Xaver in the German Bight using data assimilation. Dyn. Atmos. Ocean. 2018, 83, 64–74. [Google Scholar] [CrossRef]
- dos Santos, V.H.M.; da Silva Dias, F.J.; Torres, A.R.; Soares, R.A.; Terto, L.C.; de Castro, A.C.L.; Santos, R.L.; Cutrim, M.V.J. Hydrodynamics and suspended particulate matter retention in macrotidal estuaries located in Amazonia-semiarid interface (Northeastern-Brazil). Int. J. Sediment Res. 2020, 35, 417–429. [Google Scholar] [CrossRef]
- Tan, L.S.; Ge, Z.M.; Fei, B.L.; Xie, L.N.; Li, Y.L.; Li, S.H.; Li, X.Z.; Ysebaert, T. The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks. Estuar. Coast. Shelf Sci. 2020, 239, 106752. [Google Scholar] [CrossRef]
- Geleynse, N.; Storms, J.E.A.; Walstra, D.-J.R.; Jagers, H.R.A.; Wang, Z.B.; Stive, M.J.F. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 2011, 302, 217–226. [Google Scholar] [CrossRef]
- Dmitrenko, I.; Volkov, D.; Stadnyk, T.; Tefs, A.; Babb, D.; Kirillov, S.; Crawford, A.; Sydor, K.; Barber, D. Atmospherically forced sea-level variability in western Hudson Bay, Canada. Ocean Sci. 2021, 17, 1367–1384. [Google Scholar] [CrossRef]
- Pinet, N.; Lavoie, D.; Dietrich, J.; Hu, K.; Keating, P. Architecture and subsidence history of the intracratonic Hudson Bay Basin, northern Canada. Earth-Sci. Rev. 2013, 125, 1–23. [Google Scholar] [CrossRef]
- Ottesen, D.; Dowdeswell, J.A.; Bugge, T. Morphology, sedimentary infill and depositional environments of the Early Quaternary North Sea Basin (56°–62°N). Mar. Pet. Geol. 2014, 56, 123–146. [Google Scholar] [CrossRef]
- Sundal, A.; Nystuen, J.P.; Rørvik, K.-L.; Dypvik, H.; Aagaard, P. The Lower Jurassic Johansen Formation, northern North Sea—Depositional model and reservoir characterization for CO2 storage. Mar. Pet. Geol. 2016, 77, 1376–1401. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into water occurrence and pore size distribution by nuclear magnetic resonance in marine shale reservoirs, southern China. Energy Fuels 2023, 37, 319–327. [Google Scholar] [CrossRef]
- Schuurman, F.; Marra, W.; Kleinhans, M. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 2013, 118, 2509–2527. [Google Scholar] [CrossRef]
Parameter Settings | Value |
---|---|
Size of Study Area | 1500 × 1200 km2 |
Size of Single Grid | 3 × 3 km2 |
Time Step | 1 min |
Initial Water Level | 1.0 m |
Tidal Amplitude | 6.0 m |
Wave Height | 1 m |
Fluvial Discharge | 3000.0 m3/s |
Sediment Grain Size | 130\65\mud μm |
Coarse Sand:Fine Sand:Mud | 1:1:1 |
Maximum Water Depth | 176 m |
Morphological Scale Factor | 100 |
Model Name | Factor | Case | Parameter |
---|---|---|---|
HIGHWATER | Initial Water Level (m) | High Water Level | 45 |
MIDDLEWATER | Medium Water Level | 15 | |
BASE | Low Water Level | 1 | |
HIGHTIDE | Tidal Amplitude (m) | High Tide | 10 |
BASE | Medium Tide | 6 | |
LOWTIDE | Low Tide | 2 |
Tidal Amplitude | Average Length/km | Average Width/km | Average Thickness/m | |||
---|---|---|---|---|---|---|
Tidal Bar | Sand Sheet | Tidal Bar | Sand Sheet | Tidal Bar | Sand Sheet | |
Low tide (2 m) | 10.33 | 13.73 | 4.61 | 10.56 | 7.70 | 0.54 |
Medium tide (6 m) | 11.83 | 14.83 | 5.11 | 12.60 | 8.61 | 0.77 |
High tide (10 m) | 13.48 | 19.88 | 6.49 | 13.52 | 10.27 | 0.98 |
Water Level | Average Length/km | Average Width/km | Average Thickness/m | |||
---|---|---|---|---|---|---|
Tidal Bar | Sand Sheet | Tidal Bar | Sand Sheet | Tidal Bar | Sand Sheet | |
Low water level (1 m) | 11.83 | 14.83 | 5.11 | 12.60 | 8.61 | 0.77 |
Medium water level (15 m) | 11.23 | 13.55 | 4.49 | 11.43 | 9.06 | 0.68 |
High water level (45 m) | - | 49.21 | - | 13.29 | - | 0.64 |
Model | Hydrodynamic Condition | Statistical Result of Tidal Bars | |||||
---|---|---|---|---|---|---|---|
Tide/m | Water Level/m | Wave/m | Discharge/(m3·s−1) | Average Length/km | Average Width/km | Average Thickness/m | |
Study area | - | - | - | - | 12.02 | 5.38 | 8.93 |
Base 1 | 6 | 1 | 1 | 3000 | 11.83 | 5.11 | 8.61 |
Base 2 | 4.5 | 1 | 2 | 3000 | 10.71 | 4.69 | 7.98 |
Base 3 | 3 | 5 | 1 | 4500 | 9.66 | 6.05 | 11.06 |
Base 4 | 7.5 | 5 | 2 | 4500 | 13.24 | 6.67 | 10.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Xiong, S.; Zhang, Q.; Hong, R.; Peng, C.; Xie, R. A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation. J. Mar. Sci. Eng. 2024, 12, 1102. https://doi.org/10.3390/jmse12071102
Tang M, Xiong S, Zhang Q, Hong R, Peng C, Xie R. A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation. Journal of Marine Science and Engineering. 2024; 12(7):1102. https://doi.org/10.3390/jmse12071102
Chicago/Turabian StyleTang, Mingming, Sichen Xiong, Qian Zhang, Ruifeng Hong, Chenyang Peng, and Rong Xie. 2024. "A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation" Journal of Marine Science and Engineering 12, no. 7: 1102. https://doi.org/10.3390/jmse12071102
APA StyleTang, M., Xiong, S., Zhang, Q., Hong, R., Peng, C., & Xie, R. (2024). A Novel Method for Analyzing Sandbar Distribution in Shelf-Type Tidal Deltas Using Sediment Dynamic Simulation. Journal of Marine Science and Engineering, 12(7), 1102. https://doi.org/10.3390/jmse12071102