Deep Dynamic Weights for Underwater Image Restoration
Abstract
:1. Introduction
- We observed that color components of the degraded underwater images have linear and non-linear relationships among them. So, images are classified as Type I or Type II. Different treatment is suggested for different types of images, and it yields better results.
- The Deep Line Model (DLM) is proposed for input images having linear relationships among their color components. As the color components have a linear relationship, pixels can be improved using a linear (line) model, whereas the DLM learns the parameters of the line for each pixel.
- The Deep Curve Model (DCM) is proposed for images having non-linear relationships among their color components. As the color components have a non-linear relationship, pixels may not be improved using a line model. In this case, a curve is more appropriate and effective in improving the color components. Thus, the DCM learns the parameters of the curve for each pixel.
2. Related Work
2.1. Underwater Physical Imaging Model
2.2. Underwater Restoration Techniques
3. Motivation
4. Proposed Method
4.1. Image Classifier
4.2. Deep Line Model
4.3. Deep Curve Model
5. Results and Discussion
5.1. Datasets
5.2. Evaluation Metrics
5.3. Implementation
5.4. Comparative Analysis
5.5. Ablation Study
5.6. Complexity of Models
5.7. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASM | atmospheric scattering model |
CNN | convolutional neural network |
DCP | dark-channel prior |
DCM | Deep Curve Model |
DLM | Deep Line Model |
GFN | gated fusion network |
IFM | image formation model |
MCP | medium-channel prior |
PSNR | peak signal-to-noise ratio |
RCP | red-channel prior |
RMSE | root mean square error |
TM | transmission map |
UIEM | underwater image enhancement model |
References
- Akkaynak, D.; Treibitz, T.; Shlesinger, T.; Loya, Y.; Tamir, R.; Iluz, D. What is the space of attenuation coefficients in underwater computer vision? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4931–4940. [Google Scholar]
- Peng, Y.T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Raveendran, S.; Patil, M.D.; Birajdar, G.K. Underwater image enhancement: A comprehensive review, recent trends, challenges and applications. Artif. Intell. Rev. 2021, 54, 5413–5467. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Xie, Y.; Qu, Y.; Ma, L. Knowledge transfer dehazing network for nonhomogeneous dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Virtual, 14–19 June 2020; pp. 478–479. [Google Scholar]
- Schechner, Y.Y.; Karpel, N. Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 2005, 30, 570–587. [Google Scholar] [CrossRef]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic Red-Channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef]
- Gibson, K.B.; Vo, D.T.; Nguyen, T.Q. An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 2011, 21, 662–673. [Google Scholar] [CrossRef]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2822–2837. [Google Scholar] [CrossRef]
- Xie, J.; Hou, G.; Wang, G.; Pan, Z. A Variational Framework for Underwater Image Dehazing and Deblurring. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 3514–3526. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, P.; Sun, H.H.; Li, G.; Kwong, S.; Li, C. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, L.; Xu, W. Retinex-inspired color correction and detail preserved fusion for underwater image enhancement. Comput. Electron. Agric. 2022, 192, 106585. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer: Cham, Switzerland, 2016; pp. 154–169. [Google Scholar]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-Net: All-in-One Dehazing Network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3253–3261. [Google Scholar]
- Chen, D.; He, M.; Fan, Q.; Liao, J.; Zhang, L.; Hou, D.; Yuan, L.; Hua, G. Gated context aggregation network for image dehazing and deraining. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1375–1383. [Google Scholar]
- Engin, D.; Genç, A.; Kemal Ekenel, H. Cycle-dehaze: Enhanced cyclegan for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 825–833. [Google Scholar]
- Singh, A.; Bhave, A.; Prasad, D.K. Single image dehazing for a variety of haze scenarios using back projected pyramid network. In Proceedings of the Computer Vision—ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Proceedings, Part IV 16. Springer: Cham, Switzerland, 2020; pp. 166–181. [Google Scholar]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- Mohan, S.; Simon, P. Underwater image enhancement based on histogram manipulation and multiscale fusion. Procedia Comput. Sci. 2020, 171, 941–950. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Wang, Y.; Liu, B. Agcyclegan: Attention-guided cyclegan for single underwater image restoration. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2779–2783. [Google Scholar]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, K.; Yang, Z.; Da, Z.; Huang, S.; Wang, P. Underwater Image Enhancement Based on Improved U-Net Convolutional Neural Network. In Proceedings of the 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, China, 18–22 August 2023; pp. 1902–1908. [Google Scholar]
- Yang, J.; Li, C.; Li, X. Underwater image restoration with light-aware progressive network. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Deng, X.; Liu, T.; He, S.; Xiao, X.; Li, P.; Gu, Y. An underwater image enhancement model for domain adaptation. Front. Mar. Sci. 2023, 10, 1138013. [Google Scholar] [CrossRef]
- Liao, K.; Peng, X. Underwater image enhancement using multi-task fusion. PLoS ONE 2024, 19, e0299110. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Trans. Image Process. 2020, 29, 4376–4389. [Google Scholar] [CrossRef]
- Yang, H.H.; Fu, Y. Wavelet U-Net and the Chromatic Adaptation Transform for Single Image Dehazing. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019. [Google Scholar]
- Ju, M.; Ding, C.; Guo, C.A.; Ren, W.; Tao, D. IDRLP: Image dehazing using region line prior. IEEE Trans. Image Process. 2021, 30, 9043–9057. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Lin, X.; Wang, W.; Huang, Y.; Ding, X. Underwater image enhancement via learning water type desensitized representations. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 2764–2768. [Google Scholar]
- Drews, P.; Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission estimation in underwater single images. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013; pp. 825–830. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Sbetr, M. Color channel transfer for image dehazing. IEEE Signal Process. Lett. 2019, 26, 1413–1417. [Google Scholar] [CrossRef]
- Liu, C.; Shu, X.; Pan, L.; Shi, J.; Han, B. MultiScale Underwater Image Enhancement in RGB and HSV Color Spaces. IEEE Trans. Instrum. Meas. 2023, 72, 5021814. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, W.; Ruan, R.; Zhuang, P.; Xie, X.; Li, C. Underwater Image Quality Improvement via Color, Detail, and Contrast Restoration. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 1726–1742. [Google Scholar] [CrossRef]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Ebner, M. Color Constancy; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 7. [Google Scholar]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1780–1789. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366–2369. [Google Scholar]
Non-Learning-Based Methods | Learning-Based Methods | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measure | Dataset | Type | Input | NLD | RLP | MMLE | UNTV | ACT | DNet | AOD | FGAN | SCNet | Ours |
RMSE | EUVP | Type-I | 0.11 | 0.15 | 0.15 | 0.18 | 0.14 | 0.84 | 0.12 | 0.78 | 0.73 | 0.10 | 0.08 |
Type-II | 0.08 | 0.12 | 0.15 | 0.17 | 0.11 | 0.93 | 0.10 | 0.87 | 0.84 | 0.11 | 0.06 | ||
UIEBD | Type-I | 0.15 | 0.18 | 0.14 | 0.21 | 0.16 | 0.81 | 0.17 | 0.75 | 0.70 | 0.07 | 0.11 | |
Type-II | 0.14 | 0.12 | 0.11 | 0.24 | 0.17 | 0.92 | 0.14 | 0.86 | 0.53 | 0.10 | 0.08 | ||
PSNR | EUVP | Type-I | 20.00 | 17.00 | 17.30 | 15.30 | 17.40 | 17.50 | 19.10 | 15.10 | 13.70 | 20.00 | 22.30 |
Type-II | 22.00 | 18.40 | 16.90 | 15.60 | 19.20 | 20.60 | 20.10 | 13.30 | 15.50 | 19.70 | 25.00 | ||
UIEBD | Type-I | 17.60 | 15.30 | 17.50 | 14.30 | 16.20 | 15.50 | 15.90 | 15.10 | 12.70 | 23.60 | 20.10 | |
Type-II | 18.60 | 18.70 | 19.20 | 12.60 | 15.60 | 19.70 | 17.80 | 13.10 | 9.99 | 20.70 | 22.20 |
Non-Learning-Based Methods | Learning-Based Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Image | Input | NLD | RLP | MMLE | UNTV | ACT | D-Net | AOD | F-GAN | SCNet | Ours |
EUVP | test_p84_ | 19.30 | 15.70 | 15.10 | 17.33 | 17.52 | 17.00 | 18.90 | 15.16 | 15.50 | 15.62 | 26.70 |
Type-I | test_p404_ | 17.20 | 15.00 | 16.00 | 18.79 | 15.96 | 14.99 | 17.10 | 15.24 | 14.60 | 13.96 | 28.30 |
test_p510_ | 22.70 | 21.10 | 22.20 | 17.48 | 20.77 | 20.11 | 20.40 | 13.73 | 13.60 | 17.55 | 24.50 | |
EUVP | test_p171_ | 23.70 | 20.70 | 19.60 | 15.61 | 20.38 | 22.04 | 19.90 | 12.13 | 15.20 | 20.22 | 27.70 |
Type-II | test_p255_ | 26.50 | 18.90 | 8.45 | 10.45 | 18.61 | 24.88 | 26.40 | 15.73 | 13.50 | 24.27 | 29.90 |
test_p327_ | 23.70 | 20.20 | 16.20 | 15.68 | 20.24 | 21.18 | 20.50 | 13.44 | 15.00 | 18.99 | 26.10 | |
UIEBD | 375_img_ | 20.80 | 19.50 | 16.80 | 16.54 | 20.10 | 19.40 | 19.30 | 15.01 | 15.40 | 15.57 | 22.90 |
Type-I | 495_img_ | 18.10 | 15.40 | 14.50 | 15.11 | 17.51 | 14.62 | 17.20 | 13.94 | 14.00 | 13.80 | 27.00 |
619_img_ | 22.70 | 21.10 | 22.20 | 17.49 | 20.78 | 20.12 | 20.41 | 13.74 | 13.61 | 17.56 | 24.51 | |
UIEBD | 746_img_ | 23.70 | 20.70 | 19.60 | 15.62 | 20.39 | 22.05 | 19.91 | 12.14 | 15.21 | 20.23 | 27.71 |
Type-II | 845_img_ | 26.50 | 18.90 | 8.46 | 10.46 | 18.62 | 24.89 | 26.41 | 15.74 | 13.51 | 24.28 | 29.91 |
967_img_ | 23.70 | 20.20 | 16.21 | 15.69 | 20.25 | 21.19 | 20.51 | 13.45 | 15.01 | 19.00 | 26.11 |
Non-Learning-Based Methods | Learning-Based Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Image | Input | NLD | RLP | MMLE | UNTV | ACT | DNet | AOD | FGAN | SCNet | Ours |
EUVP | test_p84_ | 0.11 | 0.16 | 0.20 | 0.14 | 0.13 | 0.14 | 0.11 | 0.18 | 0.17 | 0.17 | 0.05 |
Type-I | test_p404_ | 0.14 | 0.18 | 0.20 | 0.11 | 0.16 | 0.18 | 0.14 | 0.17 | 0.19 | 0.20 | 0.04 |
test_p510_ | 0.07 | 0.09 | 0.10 | 0.13 | 0.09 | 0.10 | 0.10 | 0.21 | 0.21 | 0.13 | 0.06 | |
EUVP | test_p171_ | 0.07 | 0.09 | 0.10 | 0.17 | 0.10 | 0.08 | 0.10 | 0.25 | 0.17 | 0.10 | 0.04 |
Type-II | test_p255_ | 0.05 | 0.11 | 0.40 | 0.30 | 0.12 | 0.06 | 0.05 | 0.16 | 0.21 | 0.06 | 0.03 |
test_p327_ | 0.07 | 0.10 | 0.20 | 0.16 | 0.10 | 0.09 | 0.09 | 0.21 | 0.18 | 0.11 | 0.05 | |
UIEBD | 375_img_ | 0.09 | 0.11 | 0.14 | 0.15 | 0.10 | 0.11 | 0.11 | 0.18 | 0.17 | 0.17 | 0.07 |
Type-I | 495_img_ | 0.14 | 0.20 | 0.20 | 0.18 | 0.14 | 0.19 | 0.14 | 0.20 | 0.20 | 0.20 | 0.04 |
619_img_ | 0.07 | 0.09 | 0.10 | 0.13 | 0.09 | 0.10 | 0.10 | 0.21 | 0.21 | 0.13 | 0.06 | |
UIEBD | 746_img_ | 0.07 | 0.09 | 0.10 | 0.17 | 0.10 | 0.08 | 0.10 | 0.25 | 0.17 | 0.10 | 0.04 |
Type-II | 845_img_ | 0.05 | 0.11 | 0.40 | 0.30 | 0.12 | 0.06 | 0.05 | 0.16 | 0.21 | 0.06 | 0.03 |
967_img_ | 0.07 | 0.10 | 0.20 | 0.16 | 0.10 | 0.09 | 0.09 | 0.21 | 0.18 | 0.11 | 0.05 |
Datasets | Group | Input | DLM | DCM |
---|---|---|---|---|
EUVP | Type-I | 0.11/20.00 | 0.93/22.35 | 0.89/20.63 |
Type-II | 0.08/22.00 | 0.97/24.18 | 0.97/25.03 | |
UIEBD | Type-I | 0.15/17.60 | 0.93/20.08 | 0.85/16.37 |
Type-II | 0.14/18.60 | 0.94/17.81 | 0.95/22.20 |
Number of Images | Classifier | DLM | DCM |
---|---|---|---|
2700 | 37.82 | 4.11 | 5.84 |
1 | 0.0140 | 0.0015 | 0.0021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, H.S.A.; Mahmood, M.T. Deep Dynamic Weights for Underwater Image Restoration. J. Mar. Sci. Eng. 2024, 12, 1208. https://doi.org/10.3390/jmse12071208
Awan HSA, Mahmood MT. Deep Dynamic Weights for Underwater Image Restoration. Journal of Marine Science and Engineering. 2024; 12(7):1208. https://doi.org/10.3390/jmse12071208
Chicago/Turabian StyleAwan, Hafiz Shakeel Ahmad, and Muhammad Tariq Mahmood. 2024. "Deep Dynamic Weights for Underwater Image Restoration" Journal of Marine Science and Engineering 12, no. 7: 1208. https://doi.org/10.3390/jmse12071208
APA StyleAwan, H. S. A., & Mahmood, M. T. (2024). Deep Dynamic Weights for Underwater Image Restoration. Journal of Marine Science and Engineering, 12(7), 1208. https://doi.org/10.3390/jmse12071208