Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties
Abstract
:1. Introduction
1.1. Background
1.2. Literature Survey
1.3. Contributions
- (1)
- Incorporating four environmental parameters that significantly affect the power system of a ship—namely, solar irradiance, ambient temperature, significant wave height and wave period—the proposed stochastic optimization considers the uncertainties associated with them;
- (2)
- Joint Cumulative Distribution Functions (JCDFs) of solar irradiance and ambient temperature and of significant wave height and wave period are developed to characterize the synergistic effect of uncertainties on power source and hull resistance.
2. Methods
2.1. System Modeling
2.1.1. Ship Dynamics
2.1.2. Hull Resistance
2.1.3. Photovoltaic System Model
2.2. Energy Management Strategy
2.3. Uncertainty Characterization
2.3.1. Uncertainty in Power Source
- (1)
- Solar irradiance
- (2)
- Ambient temperature
2.3.2. Uncertainty in Hull Resistance
- (1)
- Significant wave height.
- (2)
- Wave period
2.4. Optimization Problem Formulation
2.4.1. Optimization Variables
2.4.2. Objective Function
2.4.3. Constraints
- (1)
- Power balance
- (2)
- Constraints of the DG
- (3)
- Constraints of the ESS
2.5. Optimization Methodology
- Step 1: scenario generation.
- Step 2: scenario reduction.
- Step 3: Problem solution.
3. Results and Discussion
3.1. Case Study
3.2. Statistical Characteristic of Stochastic Scenarios VD (10−3m3)
3.3. Optimization Results
3.4. Sensitivity Analysis of Bin Number
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Propeller Model
Appendix A.2. Gearbox Model
Appendix A.3. Motor Model
Appendix A.4. Diesel Engine Model
Appendix A.5. Generator Model
Appendix A.6. Energy Storage System Model
Appendix B
Parameter | Value |
---|---|
Cair | 0.80 |
Cs ($) | 5000.00 |
cDG ($/kW) | 350.00 [42] |
($/h) | 0.02 [56] |
cf ($/t) | 520.00 [57] |
cM ($/kW) | 32.00 [42] |
CPV ($/kW) | 6500.00 [58] |
($/kW) | 35.00 [58] |
G0 (w/m2) | 1000.00 [34] |
gESS (%) | 3.00 [59] |
gf (%) | 3.00 [59] |
HLHV (J/kg) | 4.27 × 107 [60] |
Ia (%) | 5.00 [59] |
(A) | 82 |
(A) | −41.00 |
IF | 3.71 [61] |
IPVsc0 (A) | 6.50 [58] |
iD | 0.82 |
iM | 1.92 |
K (J/K) | 1.38 × 10−23 |
m (kg) | 1.14 × 106 |
nMC | 1000 |
PSh (W) | 5000.00 |
(W) | 200,000 |
Qbat (Ah) | 41.00 [42] |
q (C) | 1.6 × 10−19 |
Sair (m2) | 60.50 |
Swet (m2) | 680.00 |
SOC0 (%) | 50.00 |
40.00 | |
60.00 | |
T (m) | 3.15 |
TPV0 (K) | 298.15 |
(s) | 60.00 |
(h) | 2.99 × 104 |
tP | 0.10 [62] |
VPVoc0 (V) | 21.00 [58] |
Y (year) | 25.00 |
YESS (year) | 5.00 [12] |
γPV | 1.15 [34] |
ΔcDG (%) | 6.00 [57] |
ρair (kg/m3) | 1.29 |
ρw | 1.03 × 103 [62] |
ηG0 | 0.97 [54] |
ηGB | 0.98 [63] |
ηMPPT | 95% [64] |
Parameters | Value |
---|---|
Maximum iterations | 50 |
Number of particles | 40 |
Inertia | 0.4 |
Global increment | 0.9 |
Particle increment | 0.9 |
Velocity limit factor | 0.1 |
References
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; van der Loeff, W.S.; Smith, T.; Zhang, Y.; Kosaka, H.; et al. Fourth IMO GHG Study 2020 Executive Summary; IMO: London, UK, 2021; pp. 1–524. [Google Scholar]
- Vahabzad, N.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Optimal energy scheduling of a solar-based hybrid ship considering cold-ironing facilities. IET Renew. Power Gener. 2021, 15, 532–547. [Google Scholar] [CrossRef]
- Park, C.; Jeong, B.; Zhou, P. Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy. Appl. Energy 2022, 328, 120174. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Yan, X.; Shen, B.; Long, T. A review of multi-energy hybrid power system for ships. Renew. Sustain. Energy Rev. 2020, 132, 110081. [Google Scholar] [CrossRef]
- Fan, A.; Li, Y.; Liu, H.; Yang, L.; Tian, Z.; Li, Y.; Vladimir, N. Development trend and hotspot analysis of ship energy management. J. Clean. Prod. 2023, 389, 135899. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Yan, X.; Li, Q.; Long, T. A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship. Energy 2018, 165, 965–978. [Google Scholar] [CrossRef]
- Qiu, Y.; Yuan, C.; Tang, J.; Tang, X. Techno-economic analysis of PV systems integrated into ship power grid: A case study. Energy Convers. Manag. 2019, 198, 111925. [Google Scholar] [CrossRef]
- Dolatabadi, S.H.; Ölçer, A.I.; Vakili, S. The Application of Hybrid Energy system (Hydrogen Fuel cell, wind, and solar) in shipping. Renew. Energy Focus 2023, 46, 197–206. [Google Scholar] [CrossRef]
- Karatug, C.; Durmusoglu, Y. Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis: A case study. Sol. Energy 2020, 207, 1259–1268. [Google Scholar] [CrossRef]
- Yehia, W.; Kamar, L.; Hassan, M.A.; Moustafa, M.M. Proposed hybrid power system for short route ferries. Nase More 2020, 67, 226–231. [Google Scholar] [CrossRef]
- Sornek, K.; Wiercioch, J.; Kurczyna, D.; Figaj, R.; Wójcik, B.; Borowicz, M.; Wieliński, M. Development of a solar-powered small autonomous surface vehicle for environmental measurements. Energy Convers. Manag. 2022, 267, 115953. [Google Scholar] [CrossRef]
- Lan, H.; Wen, S.; Hong, Y.-Y.; Yu, D.C.; Zhang, L. Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl. Energy 2015, 158, 26–34. [Google Scholar] [CrossRef]
- Nyanya, M.N.; Vu, H.B.; Schnborn, A.; Ler, A.I. Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier. Sustain. Energy Technol. 2021, 47, 101397. [Google Scholar] [CrossRef]
- Ghenai, C.; Bettayeb, M.; Brdjanin, B.; Hamid, A.K. Hybrid solar PV/PEM fuel cell/diesel generator power system for cruise ship: A case study in Stockholm, Sweden. Case Stud. Therm. Eng. 2019, 14, 100497. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Long, Y.; Wang, Y.; Liang, Y.; Song, X.; James, J.Q. Multi-objective design optimization of combined cooling, heating and power system for cruise ship application. J. Clean. Prod. 2019, 233, 264–279. [Google Scholar] [CrossRef]
- Roberts, J.J.; Cassula, A.M.; Silveira, J.L.; Bortoni, E.D.C.; Mendiburu, A.Z. Robust multi-objective optimization of a renewable based hybrid power system. Appl. Energy 2018, 223, 52–68. [Google Scholar] [CrossRef]
- Park, C.; Jeong, B.; Zhou, P.; Jang, H.; Kim, S.; Jeon, H.; Nam, D.; Rashedi, A. Live-Life cycle assessment of the electric propulsion ship using solar PV. Appl. Energy 2022, 309, 118477. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Wang, X.; Yu, L. Bi-level optimal sizing and energy management of hybrid electric propulsion systems. Appl. Energy 2020, 260, 114134. [Google Scholar] [CrossRef]
- Kim, M.; Hizir, O.; Turan, O.; Day, S.; Incecik, A. Estimation of added resistance and ship speed loss in a seaway. Ocean. Eng. 2017, 141, 465–476. [Google Scholar] [CrossRef]
- Dolatabadi, A.; Mohammadi-Ivatloo, B. Stochastic Risk-Constrained Optimal Sizing for Hybrid Power System of Merchant Marine Vessels. IEEE Trans. Ind. Inform. 2018, 12, 5509–5517. [Google Scholar] [CrossRef]
- Yao, C.; Chen, M.; Hong, Y.Y. Novel adaptive multi-clustering algorithm-based optimal ESS sizing in ship power system considering uncertainty. IEEE Trans. Power Syst. 2017, 33, 307–316. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Wen, S.; Zhao, T.; Liu, L. Data-driven robust coordination of generation and demand-side in photovoltaic integrated all-electric ship microgrids. IEEE Trans. Power Syst. 2019, 35, 1783–1795. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L. Optimization of PV-hybrid electric propulsion system with environment uncertainty. In Proceedings of the Thirtieth (2020) International Ocean and Polar Engineering Conference, Shanghai, China, 11–16 October 2020; pp. 3824–3830. [Google Scholar]
- Zhu, J.; Chen, L. A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran. Appl. Energy 2023, 350, 121604. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Wang, H.; Shang, C.; Feng, X. Robust operation of shipboard microgrids with multiple-battery energy storage system under navigation uncertainties. IEEE Trans. Veh. Technol. 2020, 69, 10531–10544. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y. Multi-objective robust energy management for all-electric shipboard microgrid under uncertain wind and wave. Int. J. Electr. Power Energy Syst. 2020, 117, 105600. [Google Scholar] [CrossRef]
- Esmailian, E.; Steen, S.; Koushan, K. Ship design for real sea states under uncertainty. Ocean. Eng. 2022, 266, 113127. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Liu, Z.; Feng, B.; Zheng, Q. Ship design optimization with mixed uncertainty based on evidence theory. Ocean. Eng. 2023, 279, 114554. [Google Scholar] [CrossRef]
- IMO. 2013 Interim Guidelines for Determining Minimum Propulsion Power to Maintain the Manoeuvrability of Ships in Adverse Conditions; IMO: London, UK, 2017; pp. 1–11. [Google Scholar]
- Liu, S.; Shang, B.; Papanikolaou, A. On the resistance and speed loss of full type ships in a seaway. Ship Technol. Res. 2019, 66, 161–179. [Google Scholar] [CrossRef]
- Lewis, E.V. Principles of Naval Architecture Second Revision (Volume III): Motions in Waves and Controllability; The Society of Naval Architects and Marine Engineers: Jersey City, NJ, USA, 1989; pp. 154–429. [Google Scholar]
- Liu, S.; Papanikolaou, A. Fast approach to the estimation of the added resistance of ships in head waves. Ocean. Eng. 2016, 112, 211–225. [Google Scholar] [CrossRef]
- Du, W.; Li, Y.; Zhang, G.; Wang, C.; Zhu, B.; Qiao, J. Ship weather routing optimization based on improved fractional order particle swarm optimization. Ocean. Eng. 2022, 248, 110680. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Fang, Z. A novel model for photovoltaic array performance prediction. Appl. Energy 2007, 84, 1187–1198. [Google Scholar] [CrossRef]
- Coskun, C.; Toygar, U.; Sarpdag, O.; Oktay, Z. Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. J. Clean. Prod. 2017, 164, 1474–1485. [Google Scholar] [CrossRef]
- Hung, Y.H.; Tung, Y.M.; Chang, C.H. Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain. Appl. Energy 2016, 173, 184–196. [Google Scholar] [CrossRef]
- Prieto, J.I.; Martínez-García, J.C.; García, D. Correlation between global solar irradiation and air temperature in Asturias, Spain. Sol. Energy 2009, 83, 1076–1085. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de reprtition an dimensions et leursmarges. In Annales de l’ISUP; 1959. Ann. L’isup 1959, VIII, 229–231. [Google Scholar]
- Suresh, V.; Sreejith, S. Generation dispatch of combined solar thermal systems using dragonfly algorithm. Computing 2017, 99, 59–80. [Google Scholar] [CrossRef]
- Marosz, M.; Jakusik, E. Downscaling of PDFs of daily air temperature in northern Poland: Assessment of predictors. Meteorol. Z. 2014, 23, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Vanem, E. Joint statistical models for significant wave height and wave period in a changing climate. Mar. Struct. 2016, 49, 180–205. [Google Scholar] [CrossRef]
- Wang, B.; Min, X.; Li, Y. Study on the economic and environmental benefits of different EV powertrain topologies. Energy Convers. Manag. 2014, 86, 916–926. [Google Scholar] [CrossRef]
- Man Diesel. Diesel-Electric Propulsion Plants: A Brief Guideline How to Engineer a Diesel-Electric Propulsion System; Man Diesel: Augsburg, Germany, 2015; pp. 1–15. [Google Scholar]
- Niu, J.; Tian, Z.; Lu, Y.; Zhao, H.; Lan, B. A robust optimization model for designing the building cooling source under cooling load uncertainty. Appl. Energy 2019, 241, 390–403. [Google Scholar] [CrossRef]
- Niu, J.; Tian, Z.; Yue, L. Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source. Appl. Energy 2020, 265, 114793. [Google Scholar] [CrossRef]
- Gharibi, M.; Askarzadeh, A. Size optimization of an off-grid hybrid system composed of photovoltaic and diesel generator subject to load variation factor. J. Energy Storage 2019, 25, 100814. [Google Scholar] [CrossRef]
- Büyük, E. Pareto-Based Multiobjective Particle Swarm Optimization: Examples in Geophysical Modeling. In Optimisation Algorithms and Swarm Intelligence; IntechOpen: London, UK, 2021. [Google Scholar]
- Olson, D.L. Comparison of weights in TOPSIS models. Math. Comput. Model. 2004, 40, 721–727. [Google Scholar] [CrossRef]
- Hou, J.; Sun, J.; Hofmann, H.F. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: Design and analysis. IEEE J. Ocean. Eng. 2017, 43, 93–107. [Google Scholar] [CrossRef]
- Bernitsas, M.M. KT, KQ and Efficiency Curves for the Wageningen B-Series Propellers; University of Michigan: Ann Arbor, MI, USA, 1981. [Google Scholar]
- Sundstrom, O.; Guzzella, L.; Soltic, P. Torque-assist hybrid electric powertrain sizing: From optimal control towards a sizing law. IEEE Trans. Control. Syst. Technol. 2010, 18, 837–849. [Google Scholar] [CrossRef]
- Sorrentino, M.; Mauramati, F.; Arsie, I.; Cricchio, A.; Pianese, C.; Nesci, W. Application of Willans line method for internal combustion engines scalability towards the design and optimization of eco-innovation solutions. In Proceedings of the International Conference on Engines & Vehicles, Napoli, Italy, 13–17 September 2015; pp. 468–476. [Google Scholar]
- Rizzoni, G.; Guzzella, L.; Baumann, B.M. Unified modeling of hybrid electric vehicle drivetrains. IEEE-ASME Trans. Mechatron. 1999, 4, 246–257. [Google Scholar] [CrossRef]
- Baldi, F.; Ahlgren, F.; Melino, F.; Gabrielii, C.; Andersson, K. Optimal load allocation of complex ship power plants. Energy Convers. Manag. 2016, 124, 344–356. [Google Scholar] [CrossRef]
- Xu, L.; Mueller, C.D.; Li, J.; Ouyang, M.; Hu, Z. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles. Appl. Energy 2015, 157, 664–674. [Google Scholar] [CrossRef]
- Rezzouk, H.; Mellit, A. Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria. Renew. Sustain. Energy Rev. 2015, 43, 1134–1150. [Google Scholar] [CrossRef]
- Dedes, E.K.; Hudson, D.A.; Turnock, S.R. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy Policy 2012, 40, 204–218. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Lou, C. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L.; Mendoza, F. Design and economical analysis of hybrid PV–wind systems connected to the grid for the intermittent production of hydrogen. Energy Policy 2009, 37, 3082–3095. [Google Scholar] [CrossRef]
- Sandmo, T. The Norwegian Emission Inventory 2011: Documentation of methodologies for estimating emissions og greenhouse gases and long-range transboundary air pollutants. J. Phys. Chem. 2011, 115, 10069–10077. [Google Scholar]
- Edwards, R.; Mahieu, V.; Griesemann, J.-C.; Larivé, J.-F.; Rickeard, D.J. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; SAE Transactions: New York, NY, USA, 2004. [Google Scholar]
- Holtrop, J.; Mennen, G.G.J. An Approximate power prediction method. Int. Shipbuild. Progress. 1982, 29, 166–170. [Google Scholar] [CrossRef]
- Ådnanes, A.K. Maritime Electrical Installations and Diesel Electric Propulsion; ABB AS: Oslo, Norway, 2003. [Google Scholar]
- Yang, H.; Wei, Z.; Lin, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
Particulars | Value |
---|---|
Length (m) | 60.00 |
Beam (m) | 10.50 |
Draft (m) | 3.15 |
Displacement (m3) | 1110.20 |
Wetted Surface area (m2) | 680 |
Length of waterline entrance (m) | 10 |
Block coefficient | 0.61 |
Optimization | Name of Pareto Front | Name of Final Solution | Uncertainty | |||
---|---|---|---|---|---|---|
Solar Irradiance | Ambient Temperature | Significant Wave Height | Wave Period | |||
Stochastic | PFsto | xsto | √ | √ | √ | √ |
Power source | PFsou | xsou | √ | √ | ||
Hull resistance | PFres | xres | √ | √ | ||
Deterministic | PFdet | xdet |
Variable | Range | xsto | xsou | xres | xdet |
---|---|---|---|---|---|
VD (10−3m3) | [14.00, 40.00] | 14.00 | 17.36 | 14.00 | 14.00 |
VM (10−3m3) | [14.20, 40.00] | 14.25 | 14.48 | 14.23 | 25.07 |
nESS | [40, 300] | 55 | 47 | 46 | 61 |
nPV | [200, 1000] | 200 | 372 | 200 | 335 |
iGB | [3.00,30.00] | 30.00 | 3 | 30 | 23.16 |
kbin | Bin Number () | Pareto Front | Length of Bin Sides | Final Solution | Mean Performance | Difference between Final Solution and Mean Performance | ||
---|---|---|---|---|---|---|---|---|
PV Module Power (W) | Hull Resistance (N) | GHG Emission (%) | Lifecycle Cost (%) | |||||
5 | 25 | PF5 | 22 | 20,000 | x5 | μ5 | 17.02 | 13.76 |
10 | 100 | PF10 | 11 | 10,000 | x10 | μ10 | 6.30 | 6.46 |
20 | 400 | PF20 | 5.5 | 5000 | x20 | μ20 | 1.42 | 2.29 |
30 | 900 | PF30 | 3.67 | 3333.33 | x30 | μ30 | 0.02 | 0.01 |
40 | 1600 | PF40 | 2.75 | 2500 | xsto | μ40 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Chen, L. Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties. J. Mar. Sci. Eng. 2024, 12, 1240. https://doi.org/10.3390/jmse12081240
Zhu J, Chen L. Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties. Journal of Marine Science and Engineering. 2024; 12(8):1240. https://doi.org/10.3390/jmse12081240
Chicago/Turabian StyleZhu, Jianyun, and Li Chen. 2024. "Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties" Journal of Marine Science and Engineering 12, no. 8: 1240. https://doi.org/10.3390/jmse12081240
APA StyleZhu, J., & Chen, L. (2024). Stochastic Optimization of Onboard Photovoltaic Hybrid Power System Considering Environmental Uncertainties. Journal of Marine Science and Engineering, 12(8), 1240. https://doi.org/10.3390/jmse12081240