A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity
Abstract
:1. Introduction
2. Materials
2.1. ENVISAT Data
- Global Monitoring (GM): This mode uses ScanSAR to generate low-resolution images (1 km) over a 405 km swath in HH or VV polarization;
- Wave Mode (WM): This mode measures changes in sea surface backscatter due to ocean waves, generating vignettes of 5 km × 5 km size with 100 km along-track spacing in HH or VV polarization;
- Image Mode (IM): This mode produces high-resolution products (30 m) on one of seven swaths spanning incidence angles from 15 to 45 degrees in HH or VV polarization;
- Alternating Polarization (AP): This mode generates high-resolution products like in IM but with polarization changing between subapertures within the synthetic aperture. ScanSAR is used without varying the subswath, resulting in two images of the same scene in different polarization combinations (HH/VV or HH/HV or VV/VH) with approximately 30 m resolution;
- Wide Swath (WS): This mode uses ScanSAR to provide medium-resolution images (150 m) over a 405 km swath in HH or VV polarization, composed of five subswaths transmitted in turn to build up continuous along-track images for each subswath.
2.2. ICEYE Data
- Stripmap mode (STRIP): It enables imaging any area on Earth at incidence angles of 15– with a ground spatial resolution of 3 m × 3 m (azimuth × range) and scene size of 50 km × 30 km (azimuth × range). The slant range resolution is m based on the range bandwidth of 300 MHz and m based on the range bandwidth of 100 MHz [45]. Although it is well known that the theoretical azimuth spatial resolution (in Stripmap mode) is given by half the antenna length (along the azimuth direction), the ICEYE azimuth pixel size of the SLC products is fixed to 3 m, whereas the azimuth antenna length is m. This results from a system design parameters optimization that is carried out to reduce the azimuth ambiguities caused by aliasing. Accordingly, during the SLC product formation, an azimuth bandwidth reduction is performed [45].
- Scan imagining mode (SCAN): It is a wide area imaging mode able to create a scene size of 100 km × 100 km, with a ground resolution of 15 m × 15 m at incidence angles of 21–.
- Spotlight mode (SPOT): It offers the finest resolution available with a ground resolution of m × m, and it can image a scene of size 5 km × 5 km at incidence angles of 20–. The spot extended area (SLEA) mode provides the largest very-high resolution SAR imagery with ground resolution of m × m and a scene size of 15 km × 15 km, or slant resolution of m × m (azimuth × range) at incidence angles of 20–.
3. Rationale of the Doppler Centroid Anomaly (DCA) Method
3.1. Doppler Centroid (DC) Estimation
3.2. DCA Technique
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Mahrad, B.; Newton, A.; Icely, J.; Kacimi, I.; Abalansa, S.; Snoussi, M. Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review. Remote Sens. 2020, 12, 2313. [Google Scholar] [CrossRef]
- Noviello, C.; Verde, S.; Zamparelli, V.; Fornaro, G.; Pauciullo, A.; Reale, D.; Nicodemo, G.; Ferlisi, S.; Gulla, G.; Peduto, D. Monitoring Buildings at Landslide Risk With SAR: A Methodology Based on the Use of Multipass Interferometric Data. IEEE Geosci. Remote Sens. Mag. 2020, 8, 91–119. [Google Scholar] [CrossRef]
- Kerbaol, V.; Collard, F. SAR-Derived coastal and marine applications: From research to operational products. IEEE J. Ocean. Eng. 2005, 30, 472–486. [Google Scholar] [CrossRef]
- Laurila, P.; Modrzewski, R.; Cheng, T.; Campbell, B.; Yanni, V.G. Validation of ICEYE Small Satellite SAR Design for Ice Detection and Imaging. In Proceedings of the OTC Arctic Technology Conference, St. John’s, NL, Canada, 24–26 October 2016. MAG ID: 2557478555. [Google Scholar] [CrossRef]
- Danovaro, R.; Carugati, L.; Berzano, M.; Cahill, A.E.; Carvalho, S.; Chenuil, A.; Corinaldesi, C.; Cristina, S.; David, R.; Dell’Anno, A.; et al. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Ma, J.; Ma, R.; Pan, Q.; Liang, X.; Wang, J.; Ni, X. A Global Review of Progress in Remote Sensing and Monitoring of Marine Pollution. Water 2023, 15, 3491. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Trivero, P.; Adamo, M.; Biamino, W.; Borasi, M.; Cavagnero, M.; De Carolis, G.; Di Matteo, L.; Fontebasso, F.; Nirchio, F.; Tataranni, F. Automatic oil slick detection from SAR images: Results and improvements in the framework of the PRIMI pilot project. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 133, 146–158. [Google Scholar] [CrossRef]
- De Carolis, G.; Olla, P.; De Santi, F. SAR image wave spectra to retrieve the thickness of grease-pancake sea ice using viscous wave propagation models. Sci. Rep. 2021, 11, 2733. [Google Scholar] [CrossRef]
- Tello, M.; Lopez-Martinez, C.; Mallorqui, J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci. Remote Sens. Lett. 2005, 2, 201–205. [Google Scholar] [CrossRef]
- Lehner, S.; Horstmann, J.; Koch, W.; Rosenthal, W. Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res. Ocean. 1998, 103, 7847–7856. [Google Scholar] [CrossRef]
- Dagestad, K.F.; Horstmann, J.; Mouche, A.; Perrie, W.; Shen, H.; Zhang, B.; Li, X.; Monaldo, F.; Pichel, W.; Lehner, S.; et al. Wind retrieval from synthetic aperture radar-an overview. In Proceedings of the 4th SAR Oceanography Workshop (SEASAR 2012), Tromsø, Norway, 18–22 June 2012; pp. 18–22. [Google Scholar]
- Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen, M.W. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2901–2909. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J. Geophys. Res. Ocean. 1997, 102, 25251–25267. [Google Scholar] [CrossRef]
- Jackson, G.; Fornaro, G.; Berardino, P.; Esposito, C.; Lanari, R.; Pauciullo, A.; Reale, D.; Zamparelli, V.; Perna, S. Experiments of sea surface currents estimation with space and airborne SAR systems. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 373–376. [Google Scholar]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Ocean. 2005, 110, C07008. [Google Scholar] [CrossRef]
- Zamparelli, V.; Jackson, G.; Cucco, A.; Fornaro, G.; Zecchetto, S. SAR based sea current estimation in the Naples coastal area. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4665–4668. [Google Scholar] [CrossRef]
- Serafino, F.; Lugni, C.; Nieto Borge, J.C.; Zamparelli, V.; Soldovieri, F. Bathymetry Determination via X-Band Radar Data: A New Strategy and Numerical Results. Sensors 2010, 10, 6522–6534. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.M.; Zebker, H.A. Interferometric radar measurement of ocean surface currents. Nature 1987, 328, 707–709. [Google Scholar] [CrossRef]
- Romeiser, R. Current measurements by airborne along-track InSAR: Measuring technique and experimental results. IEEE J. Ocean. Eng. 2005, 30, 552–569. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H.; Suchandt, S.; Kahle, R.; Rossi, C.; Bell, P.S. Quality Assessment of Surface Current Fields From TerraSAR-X and TanDEM-X Along-Track Interferometry and Doppler Centroid Analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2759–2772. [Google Scholar] [CrossRef]
- Kim, D.; Moon, W.; Imel, D.; Moller, D. Remote sensing of ocean waves and currents using NASA (JPL) AIRSAR along-track interferometry (ATI). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 2, pp. 931–933. [Google Scholar] [CrossRef]
- Rashid, M.; Gierull, C.H. Retrieval of Ocean Surface Radial Velocities With RADARSAT-2 Along-Track Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9597–9608. [Google Scholar] [CrossRef]
- Yuan, X.; Lin, M.; Han, B.; Zhao, L.; Wang, W.; Sun, J.; Wang, W. Observing Sea Surface Current by Gaofen-3 Satellite Along-Track Interferometric SAR Experimental Mode. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7762–7770. [Google Scholar] [CrossRef]
- Li, Y.; Chong, J.; Sun, K.; Yang, X.; Zhao, Y. Accuracy and Error Analysis of Vector Measurement of Ocean Surface Current by Multi-Aperture Along-Track Interferometric SAR. IEEE Access 2020, 8, 207551–207562. [Google Scholar] [CrossRef]
- Yoshida, T.; Ouchi, K.; Yang, C.S. Validation of MA-ATI SAR Theory Using Numerical Simulation for Estimating the Direction of Moving Targets and Ocean Currents. IEEE Geosci. Remote Sens. Lett. 2021, 18, 677–681. [Google Scholar] [CrossRef]
- Graber, H.C.; Thompson, D.R.; Carande, R.E. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. J. Geophys. Res. Oceans 1996, 101, 25813–25832. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H. Theoretical Evaluation of Several Possible Along-Track InSAR Modes of TerraSAR-X for Ocean Current Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 21–35. [Google Scholar] [CrossRef]
- Romeiser, R.; Breit, H.; Eineder, M.; Runge, H.; Flament, P.; de Jong, K.; Vogelzang, J. Current measurements by SAR along-track interferometry from a Space Shuttle. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2315–2324. [Google Scholar] [CrossRef]
- Madsen, S. Estimating the Doppler centroid of SAR data. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 134–140. [Google Scholar] [CrossRef]
- Bamler, R. Doppler frequency estimation and the Cramer-Rao bound. IEEE Trans. Geosci. Remote Sens. 1991, 29, 385–390. [Google Scholar] [CrossRef]
- Hansen, M.W.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Fabry, P.; Chapron, B. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Cheng, P.; Yu, L.; Li, T.; Xu, S.; Chen, J.; Li, J.; Yu, Z. An Improved Doppler Centroid Estimator Meeting the Cramér–Rao Bound for Ocean SAR Application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7614–7623. [Google Scholar] [CrossRef]
- Cumming, I. A spatially selective approach to Doppler estimation for frame-based satellite SAR processing. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1135–1148. [Google Scholar] [CrossRef]
- Hansen, M.W.; Johannessen, J.A.; Dagestad, K.F.; Collard, F.; Chapron, B. Monitoring the surface inflow of Atlantic Water to the Norwegian Sea using Envisat ASAR. J. Geophys. Res.-Oceans 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Krug, M.; Mouche, A.; Collard, F.; Johannessen, J.A.; Chapron, B. Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef]
- Chapron, B.; Collard, F.; Kerbaol, V. Satellite synthetic aperture radar sea surface Doppler measurements. In Proceedings of the 2nd Workshop on SAR Coastal and Marine Applications, Svalbard, Norway, 8–12 September 2004; pp. 8–12. [Google Scholar]
- Johannessen, J.A.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Mouche, A.; Akimov, D.; Dagestad, K.F. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Biron, K.; Van Wychen, W.; Vachon, P.W. Gulf stream detection from SAR Doppler anomaly. Can. J. Remote Sens. 2018, 44, 311–320. [Google Scholar] [CrossRef]
- Zamparelli, V.; De Santi, F.; Cucco, A.; Zecchetto, S.; De Carolis, G.; Fornaro, G. Surface Currents Derived from SAR Doppler Processing: An Analysis over the Naples Coastal Region in South Italy. J. Mar. Sci. Eng. 2020, 8, 203. [Google Scholar] [CrossRef]
- Zamparelli, V.; De Santi, F.; De Carolis, G.; Fornaro, G. SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea. Remote Sens. 2023, 15, 2074. [Google Scholar] [CrossRef]
- Alpers, W.; Mouche, A.; Horstmann, J.; Ivanov, A.Y.; Barabanov, V.S. Application of a new algorithm using Doppler information to retrieve complex wind fields over the Black Sea from ENVISAT SAR images. Int. J. Remote Sens. 2015, 36, 863–881. [Google Scholar] [CrossRef]
- Amadori, M.; Zamparelli, V.; De Carolis, G.; Fornaro, G.; Toffolon, M.; Bresciani, M.; Giardino, C.; De Santi, F. Monitoring Lakes Surface Water Velocity with SAR: A Feasibility Study on Lake Garda, Italy. Remote Sens. 2021, 13, 2293. [Google Scholar] [CrossRef]
- Qiao, S.; Liu, B.; He, Y. Improved Analytical Formula for the SAR Doppler Centroid Estimation Standard Deviation for a Dynamic Sea Surface. Remote Sens. 2023, 15, 867. [Google Scholar] [CrossRef]
- Ignatenko, V.; Laurila, P.; Radius, A.; Lamentowski, L.; Antropov, O.; Muff, D. ICEYE Microsatellite SAR Constellation Status Update: Evaluation of First Commercial Imaging Modes. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3581–3584. [Google Scholar] [CrossRef]
- Henry, J.; Chastanet, P.; Fellah, K.; Desnos, Y. Envisat multi-polarized ASAR data for flood mapping. Int. J. Remote Sens. 2006, 27, 1921–1929. [Google Scholar] [CrossRef]
- Miranda, N.; Rosich, B.; Meadows, P.J.; Haria, K.; Small, D.; Schubert, A.; Lavalle, M.; Collard, F.; Johnsen, H.; Monti-Guarnieri, A.; et al. The Envisat ASAR mission: A look back at 10 years of operation. In Proceedings of the 2013 European Space Agency Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. European Space Agency * Communication Department. [Google Scholar] [CrossRef]
- Available online: https://eocat.esa.int/sec/#data-services-area (accessed on 23 July 2024).
- Zamparelli, V.; Fornaro, G. SAR Sea Surface Currents Estimation over Long Strips of the Adriatic Sea. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 605–608. [Google Scholar] [CrossRef]
- Available online: https://www.iceye.com/company/history (accessed on 26 February 2024).
- Available online: https://www.iceye.com/sar-data/imaging-modes (accessed on 26 February 2024).
- Available online: https://www.iceye.com/blog/iceye-sar-videos-published-technical-insights-and-highlights (accessed on 26 February 2024).
- Ignatenko, V.; Nottingham, M.; Radius, A.; Lamentowski, L.; Muff, D. ICEYE Microsatellite SAR Constellation Status Update: Long Dwell Spotlight and Wide Swath Imaging Modes. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1493–1496. [Google Scholar] [CrossRef]
- Available online: https://www.iceye.com/resources/datasets (accessed on 26 February 2024).
- Li, F.k.; Held, D.N.; Curlander, J.C.; Wu, C. Doppler Parameter Estimation for Spaceborne Synthetic-Aperture Radars. IEEE Trans. Geosci. Remote Sens. -23. [CrossRef]
- Zamparelli, V.; De Santi, F.; De Carolis, G.; Fornaro, G. On the Analysis of SAR Derived Wind and Sea Surface Currents. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5721–5724. [Google Scholar] [CrossRef]
- Hamming, R.W. Digital Filters; Courier Corporation: North Chelmsford, MA, USA; Dover Publications, Inc.: Mineola, NY, USA, 2013. [Google Scholar]
- Bird, R.; Whittaker, P.; Stern, B.; Angli, N.; Cohen, M.; Guida, R. NovaSAR-S: A low cost approach to SAR applications. In Proceedings of the Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; pp. 84–87.
- Castelletti, D.; Farquharson, G.; Stringham, C.; Duersch, M.; Eddy, D. Capella Space First Operational SAR Satellite. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1483–1486. [Google Scholar] [CrossRef]
- Golkar, A.; Cataldo, G.; Osipova, K. Small satellite synthetic aperture radar (SAR) design: A trade space exploration model. Acta Astronaut. 2021, 187, 458–474. [Google Scholar] [CrossRef]
- Suess, M.; De Witte, E.; Rommen, B. Earth Explorer 10 Candidate Mission Harmony—Mission Requirements Document. In Proceedings of the EUSAR 2022, 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022. [Google Scholar]
- Verso Il Lancio dei Primi due Minisatelliti Platino-1 E Platino-2. Available online: https://www.asi.it/2021/12/verso-il-lancio-dei-primi-due-minisatelliti-platino-1-e-platino-2/ (accessed on 20 February 2023).
- Renga, A.; Gigantino, A.; Graziano, M.D.; Moccia, A.; Tebaldini, S.; Monti-Guarnieri, A.; Rocca, F.; Verde, S.; Zamparelli, V.; Mastro, P.; et al. Bistatic SAR Techniques and Products in a long baseline spaceborne scenario: Application to PLATiNO-1 mission. In Proceedings of the EUSAR 2024, 15th European Conference on Synthetic Aperture Radar, Munich, Germany, 23–26 April 2024; pp. 884–888. [Google Scholar]
- Kudryavtsev, V.; Akimov, D.; Johannessen, J.; Chapron, B. On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res. Oceans 2005, 110, C07016. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Wavelength (Center Frequency) | 0.05624624 | m |
Band type | C | |
Instrument mass | 832 | kg |
Platform velocity | 7120 | m/s |
Pulse Repetition Frequency (PRF) | 1650 to 2100 | Hz |
Chirp bandwidth | up to 16 | MHz |
Polarization modes | Single VV, HH, or Dual VV + HH, VV + VH, HH + HV | |
Antenna size | 10 × 1.3 | m |
Incidence Angle range | 15– | degree |
Acquisition modes | GM, WM, IM, AP, WS |
Parameter | Value | Unit |
---|---|---|
Wavelength (Center Frequency) | 0.03106658 | m |
Band type | X | |
Instrument mass (single sensor) | 85 | kg |
Platform velocity (single sensor) | 7377.33 | m/s |
Pulse Repetition Frequency (PRF) | 2000 to 10,000 | Hz |
Chirp bandwidth | 37.6 to 299 | MHz |
Polarization modes | VV | |
Antenna size | 3.2 × 0.4 | m |
Incidence Angle range | 15–35° | degree |
Acquisition modes | STRIP, SPOT, SCAN, SLEA, DWELL |
EB | MC | CDCE | ML | |
---|---|---|---|---|
a | 0.3985 | 0.3407 | 0.3407 | 0.2516 |
Window Size (az × rg) | Ground Covered Area [km2] | Expected DC STD Value [Hz] | Measured DC STD Value [Hz] | Error (Exp.-Meas.) [Hz] | |
---|---|---|---|---|---|
ENVISAT | 256 × 64 | 1.3 × 1.3 | 4.48 | 5.15 | 0.67 |
ICEYE | 400 × 400 | 1.2 × 1.2 | 4.43 | 4.62 | 0.19 |
ENVISAT | 426 × 106 | 2.1 × 2.1 | 2.7 | 3.61 | 0.91 |
ICEYE | 600 × 600 | 1.8 × 1.8 | 2.95 | 3.87 | 0.92 |
ENVISAT | 512 × 128 | 2.5 × 2.5 | 2.24 | 3.34 | 1.1 |
ICEYE | 800 × 800 | 2.4 × 2.4 | 2.22 | 3.56 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamparelli, V.; Mastro, P.; Pepe, A.; Verde, S. A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity. J. Mar. Sci. Eng. 2025, 13, 164. https://doi.org/10.3390/jmse13010164
Zamparelli V, Mastro P, Pepe A, Verde S. A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity. Journal of Marine Science and Engineering. 2025; 13(1):164. https://doi.org/10.3390/jmse13010164
Chicago/Turabian StyleZamparelli, Virginia, Pietro Mastro, Antonio Pepe, and Simona Verde. 2025. "A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity" Journal of Marine Science and Engineering 13, no. 1: 164. https://doi.org/10.3390/jmse13010164
APA StyleZamparelli, V., Mastro, P., Pepe, A., & Verde, S. (2025). A Comparative Analysis Between the ENVISAT and ICEYE SAR Systems for the Estimation of Sea Surface Current Velocity. Journal of Marine Science and Engineering, 13(1), 164. https://doi.org/10.3390/jmse13010164