A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Impact on the Internal Components of PEMFC
2.1. Impact on the Bipolar Plate
2.2. Impact on the Gas Diffusion Layer
2.3. Impact on the Catalyst Layer
2.4. Impact on the Proton Exchange Membrane
2.5. Impact on PEMFC Performance
3. Recovery Strategies for PEMFC After Marine Salt Spray Contamination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, B.H.; Majlan, E.H.; Daud, W.R.W.; Husaini, T.; Rosli, M.I. Effects of flow field design on water management and reactant distribution in PEMFC: A review. Ionics 2016, 22, 301–316. [Google Scholar] [CrossRef]
- Baroutaji, A.; Arjunan, A.; Robinson, J.; Wilberforce, T.; Abdelkareem, M.A.; Olabi, A.G. PEMFC poly-generation systems: Developments, merits, and challenges. Sustainability 2021, 13, 11696. [Google Scholar] [CrossRef]
- Li, S.; Wei, R.; Qi, Y.; Shen, Q. Effect of electrical contact resistance on performance and transport characteristics of proton exchange membrane fuel cells. Int. J. Electrochem. Sci. 2019, 14, 11367–11378. [Google Scholar] [CrossRef]
- Xiong, K.; Wu, W.; Wang, S.; Zhang, L. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review. Appl. Energy 2021, 301, 117443. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, H.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Wang, H.; Zhang, G.; Li, Z.; Liu, Z. Pore scale study of heat and mass transfer in ice-containing gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2023, 580, 233347. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Atasay, N.; Atmanli, A.; Yilmaz, N. Liquid cooling flow field design and thermal analysis of proton exchange membrane fuel cells for space applications. Int. J. Energy Res. 2023, 2023, 7533993. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; De Leeuw, G. Marine aerosol production: A review of the current knowledge. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 1753–1774. [Google Scholar] [CrossRef] [PubMed]
- Lamard, M.; Auvity, B.; Buttin, P.; Rosini, S.; Retière, C. Multiscale study of PEMFC in marine environment: Impact of a NaCl spray on durability. ECS Trans. 2022, 109, 251. [Google Scholar] [CrossRef]
- Abollino, O.; Aceto, M.; La Gioia, C.; Sarzanini, C.; Mentasti, E. Spatial and seasonal variations of major, minor and trace elements in Antarctic seawater. Chemometric investigation of variable and site correlations. Adv. Environ. Res. 2001, 6, 29–43. [Google Scholar] [CrossRef]
- Sohrin, Y.; Bruland, K.W. Global status of trace elements in the ocean. TrAC Trends Anal. Chem. 2011, 30, 1291–1307. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.; Li, C.; Pang, H.; Zhang, T.; Ye, M. A salt-rejecting solar evaporator for continuous steam generation. J. Environ. Chem. Eng. 2021, 9, 105010. [Google Scholar] [CrossRef]
- Kim, S.H.; Ra, K.; Kim, K.T.; Jeong, H.; Lee, J.; Kang, D.J.; Rho, T.; Kim, I. R/V Isabu-based first ultraclean seawater sampling for ocean trace elements in Korea. Ocean Sci. J. 2019, 54, 673–684. [Google Scholar] [CrossRef]
- Abollino, O.; Aceto, M.; Buoso, S.; Gioia, C.L.; Sarzanini, C.; Mentasti, E. Distribution of major, minor and trace elements in Antarctic offshore and coastal seawaters: Correlation among sites and variables by pattern recognition. Int. J. Environ. Anal. Chem. 2004, 84, 471–492. [Google Scholar] [CrossRef]
- Singh, R.P.; Abbas, N.M.; Smesko, S.A. Suppressed ion chromatographic analysis of anions in environmental waters containing high salt concentrations. J. Chromatogr. A 1996, 733, 73–91. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Martinez, A.; Hong, P.; Xu, H.; Bockmiller, F.R. Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and status, technology, and perspectives. Adv. Appl. Energy 2021, 2, 100011. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Ling, C.Y.; Han, M.; Yong, R.Y.; Sun, D.; Chen, J. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2020, 45, 29832–29847. [Google Scholar] [CrossRef]
- Lædre, S.; Kongstein, O.E.; Oedegaard, A.; Seland, F.; Karoliussen, H. The effect of pH and halides on the corrosion process of stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2012, 37, 18537–18546. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Liu, H. Effect of fluoride ions on corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) cathode environments. J. Power Sources 2010, 195, 5651–5659. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Liu, H. Influence of fluoride ions on corrosion performance of 316L stainless steel as bipolar plate material in simulated PEMFC anode environments. Int. J. Hydrogen Energy 2012, 37, 1875–1883. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Liu, H. Factors affecting corrosion behavior of SS316L as bipolar plate material in PEMFC cathode environments. Int. J. Hydrogen Energy 2012, 37, 13822–13828. [Google Scholar] [CrossRef]
- Yang, Y.; Ning, X.; Tang, H.; Guo, L.; Liu, H. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application. Appl. Surf. Sci. 2014, 320, 274–280. [Google Scholar] [CrossRef]
- Xuan, J.; Xin, Y.; Xu, L.; Guo, M.; Huang, L.; Zhang, Y.; Zhao, Y.; Liu, Y.; Li, L.; Xue, L.; et al. Effects of fluoride ions on corrosion performance and surface properties of SS304 in simulated PEMFC cathodic environments. Renew. Energy 2023, 212, 769–778. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Jin, J.; Yang, S.; Li, G. A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism. Renew. Sustain. Energy Rev. 2022, 156, 111998. [Google Scholar] [CrossRef]
- Li, S.; Chen, P.; Shen, Q.; Zhang, S.; Liao, J.; Jiang, Z.; Gao, P.; Andersson, M. Pore-scale study of two-phase flow in the gas diffusion layer of proton exchange membrane fuel cells: The impact of polytetrafluoroethylene content and gradient distribution. Mater. Today Commun. 2024, 39, 108773. [Google Scholar] [CrossRef]
- Ismail, M.S.; Damjanovic, T.; Ingham, D.B.; Pourkashanian, M.; Westwood, A. Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells. J. Power Sources 2010, 195, 2700–2708. [Google Scholar] [CrossRef]
- Yoon, G.H.; Park, Y. Enhanced hydrophobicity of GDL by a novel coating process in PEM fuel cells. Int. J. Precis. Eng. Manuf. 2012, 13, 1153–1159. [Google Scholar] [CrossRef]
- Uemura, S.; Yamazki, M.; Yoshida, T.; Jao, T.C.; Hirai, S. Performance degradation of PEMFC by sea salt aerosol contamination. ECS Trans. 2017, 80, 651. [Google Scholar] [CrossRef]
- Nakajima, H.; Kitahara, T.; Dan, K. Electrochemical impedance diagnosis of abnormal operational conditions for reliability of polymer electrolyte fuel cells in marine power application-sea salt contamination. ECS Trans. 2019, 92, 341. [Google Scholar] [CrossRef]
- Yan, W.M.; Chu, H.S.; Liu, Y.L.; Chen, F.; Jang, J.H. Effects of chlorides on the performance of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 5435–5441. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, D.; Hnydiuk-Stefan, A.; Ma, Z.; Królczyk, G.; Li, Z. Energy storage performance of hydrogen fuel cells operating in a marine salt spray environment using experimental evaluation. Int. J. Hydrogen Energy 2024, 52, 213–225. [Google Scholar] [CrossRef]
- Wen, X.; Li, Z.; Wang, H.; Xiao, L.; Li, L.; Mao, K.; Lu, F. Experimental investigation for proton exchange membrane fuel cells in marine salt spray environment. ACS Omega 2024, 9, 24880–24888. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.A.; Wang, X.; Park, J.; Pasaogullari, U.; Bonville, L. Distributed effects of calcium ion contaminant on polymer electrolyte fuel cell performance. J. Power Sources 2015, 296, 64–69. [Google Scholar] [CrossRef]
- Ohma, A.; Mashio, T.; Sato, K.; Iden, H.; Ono, Y.; Sakai, K.; Akizuki, K.; Takaichi, S.; Shinohara, K. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim. Acta 2011, 56, 10832–10841. [Google Scholar] [CrossRef]
- Scofield, M.E.; Liu, H.; Wong, S.S. A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 2015, 44, 5836–5860. [Google Scholar] [CrossRef]
- Qi, J.; Ge, J.; Uddin, M.A.; Zhai, Y.; Pasaogullari, U.; St-Pierre, J. Evaluation of cathode contamination with Ca2+ in proton exchange membrane fuel cells. Electrochim. Acta 2018, 259, 510–516. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sakamoto, S.; Nakato, K.; Hamada, A.; Itoh, Y. Degradation of polymer electrolyte fuel cells under the existence of anion species. J. Power Sources 2008, 179, 560–565. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Qian, W.; Zhang, S.; Wessel, S.; Cheng, T.T.H.; Shen, J.; Wu, S. Chloride contamination effects on proton exchange membrane fuel cell performance and durability. J. Power Sources 2011, 196, 6249–6255. [Google Scholar] [CrossRef]
- Yadav, A.P.; Nishikata, A.; Tsuru, T. Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution. Electrochim. Acta 2007, 52, 7444–7452. [Google Scholar] [CrossRef]
- Pavlišič, A.; Jovanovič, P.; Šelih, V.S.; Šala, M.; Hodnik, N.; Hočevar, S.; Gaberšček, M. The influence of chloride impurities on Pt/C fuel cell catalyst corrosion. Chem. Commun. 2014, 50, 3732–3734. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Qian, W.; Yu, Y.; Yuan, X.Z.; Wang, H.; Jiang, M.; Wessel, S.; Cheng, T.T.H. Impacts of operating conditions on the effects of chloride contamination on PEM fuel cell performance and durability. J. Power Sources 2012, 218, 375–382. [Google Scholar] [CrossRef]
- Uddin, M.A.; Wang, X.; Qi, J.; Ozdemir, M.O.; Pasaogullari, U.; Bonville, L.; Molter, T. Effect of chloride on PEFCs in presence of various cations. J. Electrochem. Soc. 2015, 162, F373. [Google Scholar] [CrossRef]
- Park, S.; Shorova, D.; Kim, H. Effect of operating cell voltage on the NaCl poisoning mechanism in polymer electrolyte membrane fuel cells. J. Power Sources 2022, 538, 231590. [Google Scholar] [CrossRef]
- Baturina, O.A.; Epshteyn, A.; Northrup, P.; Swider-Lyons, K.E. The influence of cell voltage on the performance of a PEM fuel cell in the presence of HCl in air. J. Electrochem. Soc. 2014, 161, F365. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Paulus, U.A.; Gasteiger, H.A.; Behm, R.J. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. 2001, 508, 41–47. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Li, X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochem. Energy Rev. 2023, 6, 13. [Google Scholar] [CrossRef]
- Turtayeva, Z.; Xu, F.; Dillet, J.; Mozet, K.; Peignier, R.; Celzard, A.; Maranzana, G. The influence of ink formulation and preparation on the performance of proton-exchange membrane fuel cell. Energies 2023, 16, 7519. [Google Scholar] [CrossRef]
- Yandrasits, M.A.; Lindell, M.J.; Hamrock, S.J. New directions in perfluoroalkyl sulfonic acid-based proton-exchange membranes. Curr. Opin. Electrochem. 2019, 18, 90–98. [Google Scholar] [CrossRef]
- Ghorai, A.; Sahoo, A.; Baitalik, S.; Banerjee, S. Multifunctional sulfonated polytriazoles: Proton-exchange membrane properties, molecular logic gates, and modeling of stimuli-responsive behaviors. ACS Appl. Polym. Mater. 2022, 4, 5583–5595. [Google Scholar] [CrossRef]
- Okada, T.; Satou, H.; Okuno, M.; Yuasa, M. Ion and water transport characteristics of perfluorosulfonated ionomer membranes with H+ and alkali metal cations. J. Phys. Chem. B 2002, 106, 1267–1273. [Google Scholar] [CrossRef]
- St-Pierre, J. PEMFC contamination model: Foreign cation exchange with ionomer protons. J. Power Sources 2011, 196, 6274–6283. [Google Scholar] [CrossRef]
- Lee, C.H.; Wang, X.; Peng, J.K.; Katzenberg, A.; Ahluwalia, R.K.; Kusoglu, A.; Babu, S.K.; Spendelow, J.S.; Mukundan, R.; Borup, R.L. Toward a comprehensive understanding of cation effects in proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2022, 14, 35555–35568. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, J.; Pan, Q.; Liu, Z.; Hou, Q. Effects of Mg2+ contamination on the performance of proton exchange membrane fuel cell. Energy 2019, 189, 116135. [Google Scholar] [CrossRef]
- Ma Andersen, S. The importance of ion selectivity of perfluorinated sulfonic acid membrane for the performance of proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 2015, 12, 061010. [Google Scholar] [CrossRef]
- Qi, J.; Wang, X.; Pasaogullari, U.; Bonville, L.J.; Molter, T. Effect of cationic contaminants on polymer Electrolyte Fuel cell performance. ECS Trans. 2013, 50, 671. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, G.; Shen, Q.; Li, S.; Li, Z.; Liao, J.; Jiang, Z.; Wang, H.; Zhang, H.; Ye, W. Study on the transport performance degradation of Nafion membrane due to the presence of Na+ and Ca2+ using molecular dynamics simulations. J. Power Sources 2022, 542, 231740. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, G.; Li, S.; Shen, Q.; Jiang, Z.; Li, Z.; Wang, H.; Liao, J.; Zhang, H. Molecular dynamics study on the impacts of cations in sea salt aerosol on transport performance of Nafion Membranes for PEMFCs in marine application. Int. J. Hydrogen Energy 2022, 47, 27139–27149. [Google Scholar] [CrossRef]
- Li, Y.; Chu, J.; Su, T.; Tan, X.; Hou, Q.; Tan, J. Molecular dynamics study on impacts of different mixed metal ion contents on transport performance of proton exchange membrane for PEMFCs. Int. J. Hydrogen Energy 2024, 55, 347–356. [Google Scholar] [CrossRef]
- Liao, J.; Yang, J.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Bjerrum, N.J.; He, R.; Xing, W. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J. Power Sources 2013, 238, 516–522. [Google Scholar] [CrossRef]
- Teixeira, F.C.; Teixeira AP, S.; Rangel, C.M. Chemical stability of new nafion membranes doped with bisphosphonic acids under Fenton oxidative conditions. Int. J. Hydrogen Energy 2023, 48, 37489–37499. [Google Scholar] [CrossRef]
- Hommura, S.; Kawahara, K.; Shimohira, T.; Teraoka, Y. Development of a method for clarifying the perfluorosulfonated membrane degradation mechanism in a fuel cell environment. J. Electrochem. Soc. 2007, 155, A29. [Google Scholar] [CrossRef]
- Madhav, D.; Shao, C.; Mus, J.; Buysschaert, F.; Vandeginste, V. The effect of salty environments on the degradation behavior and mechanical properties of nafion membranes. Energies 2023, 16, 2256. [Google Scholar] [CrossRef]
- Kundu, S.; Karan, K.; Fowler, M.; Simon, L.C.; Peppley, B.; Halliop, E. Influence of micro-porous layer and operating conditions on the fluoride release rate and degradation of PEMFC membrane electrode assemblies. J. Power Sources 2008, 179, 693–699. [Google Scholar] [CrossRef]
- Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G.G.; Holdcroft, S.; Kjeang, E. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. J. Power Sources 2014, 257, 102–110. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Zhang, T.; Pan, X. Performance prediction of fuel cells using long short-term memory recurrent neural network. Int. J. Energy Res. 2021, 45, 9141–9161. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Wang, H.; Blanco, M.; Martin, J.J.; Zhang, J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques. Int. J. Hydrogen Energy 2008, 33, 1735–1746. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, M.; Wang, H. New insights into the performance and durability degradation mechanisms of PEMFCs caused by Cr3+ contaminant. Fuel 2024, 365, 131253. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.; Ozdemir, O.; Uddin, A.; Pasaogullari, U.; Bonville, L.J.; Molter, T. Ca2+ as an air impurity in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2014, 161, F1006. [Google Scholar] [CrossRef]
- Sasank, B.V.; Rajalakshmi, N.; Dhathathreyan, K.S. Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions. J. Mar. Sci. Technol. 2016, 21, 471–478. [Google Scholar] [CrossRef]
- Lamard, M.; Auvity, B.; Buttin, P.; Rosini, S.; Retiere, C. Impact of NaCl spray on the durability of PEMFC single cells and stacks in marine environment. J. Electrochem. Soc. 2023, 170, 024504. [Google Scholar] [CrossRef]
- Mikkola, M.S.; Rockward, T.; Uribe, F.A.; Pivovar, B.S. The effect of NaCl in the cathode air stream on PEMFC performance. Fuel Cells 2007, 7, 153–158. [Google Scholar] [CrossRef]
- Yoo, H.J.; Cho, G.Y. Influences of flow channel on electrochemical characteristics of polymer electrolyte fuel cells humidified with NaCl contained H2O. Sustainability 2023, 15, 2415. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- DallArmi, C.; Pivetta, D.; Taccani, R. Hybrid PEM fuel cell power plants fuelled by hydrogen for improving sustainability in shipping: State of the art and review on active projects. Energies 2023, 16, 2022. [Google Scholar] [CrossRef]
- Stark, C.; Xu, Y.; Zhang, M.; Yuan, Z.; Tao, L.; Shi, W. Study on applicability of energy-saving devices to hydrogen fuel cell-powered ships. J. Mar. Sci. Eng. 2022, 10, 388. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Janardhanan, V.M.; Rajalakshmi, N.; Dhathathreyan, K.S. Chlorine-contaminated anode and cathode PEMFC-recovery perspective. J. Solid State Electrochem. 2018, 22, 2107–2113. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; Artyushkova, K.; St-Pierre, J. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning. J. Power Sources 2017, 342, 135–147. [Google Scholar] [CrossRef]
Categorization | Element Type | Percentage |
---|---|---|
Major element | Cations: Na+, Mg2+, Ca2+, K+, Sr2+ Anions: Cl−, Br−, SO42−, HCO3−, F−, | 99.9% |
Minor and trace elements | Al3+, Cr2+, Co2+, Fe2+, Fe3+, Mn2+, Ni2+, Cu2+, etc. | 0.1% |
Components | Degradation Mechanisms | Proposed Improvements |
---|---|---|
Bipolar plate | Surface corrosion caused by Cl− and F− | Coating technology and surface modification |
Gas diffusion layer | Salt deposits on carbon fibers, thereby reducing hydrophobicity | Application of corrosion-resistant materials, coating technology, structural gradient design |
Catalyst layer | Cations occupy the active sites of ionomers in the catalytic layer; anions strongly adsorb onto Pt catalysts, which can easily lead to complexation reactions and cause redeposition of Pt catalysts | Developing new catalysts and optimizing the structure, increasing the number of three phase boundaries |
Proton exchange membrane | Cations undergo ion exchange reactions with sulfonic acid groups, reducing conductivity and potentially promoting membrane degradation, while anions can cause changes in membrane structure | Utilizing a proton exchange membrane with high chemical stability and mechanical strength |
Authors | Contaminants | Main Conclusions | Performance Degradation |
---|---|---|---|
Yan et al. [32] | Na+, Ca2+ | The declination rate is 1.082 mV h−1 for NaCl/air fuel gas mixture and 3.446 mV h−1 for CaCl2/air fuel gas mixture | About 2.2% for Na+ and 7.5% for Ca2+ contained after 12 h |
Uddin et al. [44] | H+/ Chloride salt | With the start of contaminant injection, the rate of voltage loss increased for all cases; HCl affected the cell faster than the other contaminants; Significant performance decay was observed for HCl in less than 24 h of contamination | About 80 mv decrease for HCl contained after 48 h, other chloride salt less than this value |
Zhu et al. [55] | Mg2+ | After contaminated by 50 ppm Mg2+, the maximum power density of the fuel cell decreased | For 4, 9, 16, and 20 h, the performance decreased by 1%, 21.9%, 31.7%, and 41.4% |
Wang et al. [70] | Ca2+ | The presence of Ca2+ ions not only led to a significant decrease in performance, but also significantly reduced the open circuit voltage at high concentrations | The highest voltage degradation is 253.9 mv in all cases |
Sasank et al. [71] | Salt spray | Performance decreased by simulating salt spray environment | Performance decreased by more than 60% after 48 h of operation |
Lamard et al. [72] | NaCl | NaCl mist reduces PEMFC lifetime, especially when operated discontinuously | The voltage degradation of the fuel cell stack is about 0.012 mv/h |
Mikkola et al. [73] | NaCl | At high concentrations and flow rates of sodium chloride solution, PEMFC performance deteriorates rapidly | The decrease in current density is about 30% within 100 h |
Yoo et al. [74] | NaCl | The influence of NaCl solution on the serpentine flow field is more severe than that on the parallel flow field | After 20 h of pollution testing, the parallel flow field performance decreased by 30.91%, and the serpentine flow field performance decreased by 84.51% |
Authors | Experimental Methods | Recovery Method | Reversibility or Not | Performance Recovery |
---|---|---|---|---|
Li et al. [40] | HCl cathode or anode injection | H2O introduced to the cathode or anode | Irreversible at high concentrations, partially reversible at low concentrations | A slight decrease than initial state at 4 ppm contamination |
Park et al. [45] | NaCl cathode atomization injection | Apply an external voltage of 1.3 V to the cathode | The initial working voltage is reversible at 0.6 V and partially reversible at 0.9 V | Recovery degree 100% at 0.6 V, only partially recover at 0.9 V |
Qi et al. [57] | Cations contaminations cathode atomization injection | Air introduced to the cathode | Partially reversible | Only a slight increase in voltage in all cases |
Sasank et al. [71] | Marine salt spray cathode injection | H2O introduced to the cathode | Partially reversible | The maximum performance recovery of PEMFC could reach 93.3% |
Lamard et al. [72] | NaCl cathode atomization injection | N2, H2O introduced to the cathode | Partially reversible under short-term contamination, while irreversible under long-term contamination | Under less than 50 h of contamination, the performance can be restored by about 80% |
Yoo et al. [74] | NaCl cathode atomization injection | H2O introduced to the cathode | Partially reversible | The serpentine flow field recovered 52.96%, the parallel flow field 1.22% |
Unnikrishnan et al. [78] | Cl2 cathode and anode injection | Apply an external voltage of 0.1 V to the cathode | Reversible | Performance recovery 100% |
Reshetenko et al. [79] | Cathodic injection of Br−-containing solution | Air, N2 introduced to the cathode | Air purging is irreversible, while N2 purging is reversible | Performance recovery only 50 mv |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhu, J.; Yang, G.; Shen, Q. A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells. J. Mar. Sci. Eng. 2025, 13, 172. https://doi.org/10.3390/jmse13010172
Li S, Zhu J, Yang G, Shen Q. A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells. Journal of Marine Science and Engineering. 2025; 13(1):172. https://doi.org/10.3390/jmse13010172
Chicago/Turabian StyleLi, Shian, Jiakai Zhu, Guogang Yang, and Qiuwan Shen. 2025. "A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells" Journal of Marine Science and Engineering 13, no. 1: 172. https://doi.org/10.3390/jmse13010172
APA StyleLi, S., Zhu, J., Yang, G., & Shen, Q. (2025). A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells. Journal of Marine Science and Engineering, 13(1), 172. https://doi.org/10.3390/jmse13010172